Difference between revisions of "NTS ABSTRACT"
Jump to navigation
Jump to search
Line 27: | Line 27: | ||
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Solly Parenti''' | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Solly Parenti''' | ||
|- | |- | ||
− | | bgcolor="#BCD2EE" align="center" | | + | | bgcolor="#BCD2EE" align="center" | Unitary CM Fields and the Colmez Conjecture |
|- | |- | ||
| bgcolor="#BCD2EE" | Pierre Colmez conjectured a formula for the Faltings height of a CM abelian variety in terms of log derivatives of Artin L-functions arising from the CM type. We will study the relevant class functions in the case where our CM field contains an imaginary quadratic field and use this to extend the known cases of the conjecture. | | bgcolor="#BCD2EE" | Pierre Colmez conjectured a formula for the Faltings height of a CM abelian variety in terms of log derivatives of Artin L-functions arising from the CM type. We will study the relevant class functions in the case where our CM field contains an imaginary quadratic field and use this to extend the known cases of the conjecture. |
Revision as of 22:09, 7 September 2017
Return to NTS Spring 2017
Sept 7
David Zureick-Brown |
Progress on Mazur’s program B |
I’ll discuss recent progress on Mazur’s ”Program B”, including my own recent work with Jeremy Rouse which completely classifies the possibilities for the 2-adic image of Galois associated to an elliptic curve over the rationals. I will also discuss a large number of other very recent results by many authors. |
Sept 14
Solly Parenti |
Unitary CM Fields and the Colmez Conjecture |
Pierre Colmez conjectured a formula for the Faltings height of a CM abelian variety in terms of log derivatives of Artin L-functions arising from the CM type. We will study the relevant class functions in the case where our CM field contains an imaginary quadratic field and use this to extend the known cases of the conjecture. |
Sept 21
Chao Li |
Goldfeld's conjecture and congruences between Heegner points |
Given an elliptic curve E over Q, a celebrated conjecture of Goldfeld asserts that a positive proportion of its quadratic twists should have analytic rank 0 (resp. 1). We show this conjecture holds whenever E has a rational 3-isogeny. We also prove the analogous result for the sextic twists of j-invariant 0 curves. For a more general elliptic curve E, we show that the number of quadratic twists of E up to twisting discriminant X of analytic rank 0 (resp. 1) is >> X/log^{5/6}X, improving the current best general bound towards Goldfeld's conjecture due to Ono--Skinner (resp. Perelli--Pomykala). We prove these results by establishing a congruence formula between p-adic logarithms of Heegner points based on Coleman's integration. This is joint work with Daniel Kriz. |