AMS Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
 
(162 intermediate revisions by 17 users not shown)
Line 1: Line 1:
The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.


* '''When:''' Wednesdays, 3:20 PM – 3:50 PM
* '''When:''' Thursdays 4:00-4:30pm
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu]
* '''Organizers:''' Ivan Aidun, Alex Bonat, Kaiyi Huang, Ethan Schondorf


Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.


The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].


== Spring 2019 ==
== Spring 2025 ==
<center>
{| cellspacing="5" cellpadding="14" border="0" style="color:black; font-size:120%"
! align="center" width="200" bgcolor="#D0D0D0" |'''Date'''
! align="center" width="200" bgcolor="#A6B658" |'''Speaker'''
! align="center" width="300" bgcolor="#BCD2EE" |'''Title'''
! align="center" width="400" bgcolor="#BCD2EE" |'''Abstract'''
|-
| bgcolor="#D0D0D0" |January 30
| bgcolor="#A6B658" |Caroline Nunn
| bgcolor="#BCD2EE" |Watch Caroline eat a donut: an introduction to Morse theory
| bgcolor="#BCD2EE" |Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.
|-
| bgcolor="#D0D0D0" |February 6
| bgcolor="#A6B658" |Inbo Gottlieb-Fenves
| bgcolor="#BCD2EE" |Numbers Modulo One
| bgcolor="#BCD2EE" |For millions of years, people have wondered what subsets of the circle are invariant under multiplication by squares. In this talk, I will tell you the answer.
|-
| bgcolor="#D0D0D0" |February 13
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |February 20
| bgcolor="#A6B658" |Chiara Travesset
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |February 27
| bgcolor="#A6B658" |Awildo Gutierrez
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |March 6
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |March 13
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |March 19
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |Special Visit Day Talks!
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |March 20
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |March 27
| bgcolor="#A6B658" |SPRING BREAK
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |April 3
| bgcolor="#A6B658" |Emma Hayes
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |April 10
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |April 17
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |April 24
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |May 1
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|}
</center>


=== February 6, Xiao Shen (in VV B139)===


Title: Limit Shape in last passage percolation
== Fall 2024 ==
<center>
{| cellspacing="5" cellpadding="14" border="0" style="color:black; font-size:120%"
! align="center" width="200" bgcolor="#D0D0D0" |'''Date'''
! align="center" width="200" bgcolor="#A6B658" |'''Speaker'''
! align="center" width="300" bgcolor="#BCD2EE" |'''Title'''
! align="center" width="400" bgcolor="#BCD2EE" |'''Abstract'''
|-
| bgcolor="#D0D0D0" |September 12
| bgcolor="#A6B658" |Ari Davidovsky
| bgcolor="#BCD2EE" |95% of people can't solve this!
| bgcolor="#BCD2EE" | [[File:Image.png|360px]]


Abstract: Imagine the following situation, attached to each point on the integer lattice Z^2 there is an arbitrary amount of donuts.  Fix x and y in Z^2, if you get to eat all the donuts along an up-right path between these two points, what would be the maximum amount of donuts you can get? This model is often called last passage percolation, and I will discuss a classical result about its scaling limit: what happens if we zoom out and let the distance between x and y tend to infinity.
We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.
|-
| bgcolor="#D0D0D0" |September 19
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |September 26
| bgcolor="#A6B658" |Mateo Morales
| bgcolor="#BCD2EE" |Officially petitioning the department to acquire a ping pong table.
| bgcolor="#BCD2EE" |Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.
I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.


=== February 13, Michel Alexis (in VV B139)===
Very approachable if you know what a group is but does require tons of ping pong experience.
 
|-
Title: An instructive yet useless theorem about random Fourier Series
| bgcolor="#D0D0D0" |October 3
 
| bgcolor="#A6B658" |Karthik Ravishankar
Abstract: Consider a Fourier series with random, symmetric, independent coefficients. With what probability is this the Fourier series of a continuous function? An <math>L^{p}</math> function? A surprising result is the Billard theorem, which says such a series results almost surely from an <math>L^{\infty}</math> function if and only if it results almost surely from a continuous function. Although the theorem in of itself is kind of useless in of itself, its proof is instructive in that we will see how, via the principle of reduction, one can usually just pretend all symmetric random variables are just coin flips (Bernoulli trials with outcomes <math>\pm 1</math>).
| bgcolor="#BCD2EE" |Incompleteness for the working mathematician
 
| bgcolor="#BCD2EE" |In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
=== February 20, Geoff Bentsen ===
|-
 
| bgcolor="#D0D0D0" |October 10
Title: An Analyst Wanders into a Topology Conference
| bgcolor="#A6B658" |Elizabeth Hankins
 
| bgcolor="#BCD2EE" |Mathematical Origami and Flat-Foldability
Abstract: Fourier Restriction is a big open problem in Harmonic Analysis; given a "small" subset <math>E</math> of <math>R^d</math>, can we restrict the Fourier transform of an <math>L^p</math> function to <math>E</math> and retain any information about our original function? This problem has a nice (somewhat) complete solution for smooth manifolds of co-dimension one. I will explore how to start generalizing this result to smooth manifolds of higher co-dimension, and how a topology paper from the 60s about the hairy ball problem came in handy along the way.
| bgcolor="#BCD2EE" |If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
 
|-
=== February 27, James Hanson ===
| bgcolor="#D0D0D0" |October 17
 
| bgcolor="#A6B658" |CANCELLED
Title: What is...a Topometric Space?
| bgcolor="#BCD2EE" |NONE
 
| bgcolor="#BCD2EE" |NONE
Abstract: Continuous first-order logic is a generalization of first-order logic that is well suited for the study of structures with a natural metric, such as Banach spaces and probability algebras. Topometric spaces are a simple generalization of topological and metric spaces that arise in the study of continuous first-order logic. I will discuss certain topological issues that show up in topometric spaces coming from continuous logic, as well as some partial solutions and open problems. No knowledge of logic will be required for or gained from attending the talk.
|-
 
| bgcolor="#D0D0D0" |October 24
=== March 6, Working Group to establish an Association of Mathematics Graduate Students ===
| bgcolor="#A6B658" |CANCELLED
 
| bgcolor="#BCD2EE" |NONE
Title: Math and Government
| bgcolor="#BCD2EE" |NONE
 
|-
Abstract: TBD
| bgcolor="#D0D0D0" |October 31
 
| bgcolor="#A6B658" |Jacob Wood
=== March 13, Connor Simpson ===
| bgcolor="#BCD2EE" |What is the length of a <s>potato</s> pumpkin?
 
| bgcolor="#BCD2EE" |How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
Title: Counting faces of polytopes with algebra
|-
 
| bgcolor="#D0D0D0" |November 7
Abstract: A natural question is: with a fixed dimension and number of vertices, what is the largest number of d-dimensional faces that a polytope can have? We will outline a proof of the answer to this question.
| bgcolor="#A6B658" |CANCELLED: DISTINGUISHED LECTURE
 
| bgcolor="#BCD2EE" |NONE
=== March 26 (Prospective Student Visit Day), Multiple Speakers ===
| bgcolor="#BCD2EE" |NONE
 
|-
====Eva Elduque====
| bgcolor="#D0D0D0" |November 14
 
| bgcolor="#A6B658" |Sapir Ben-Shahar
Title: TBD
| bgcolor="#BCD2EE" |Hexaflexagons
 
| bgcolor="#BCD2EE" |Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
Abstract: TBD
|-
 
| bgcolor="#D0D0D0" |November 21
====Rajula Srivastava====
| bgcolor="#A6B658" |Andrew Krenz
 
| bgcolor="#BCD2EE" |All concepts are database queries
Title: TBD
| bgcolor="#BCD2EE" |A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
 
|-
Abstract: TBD
| bgcolor="#D0D0D0" |November 28
 
| bgcolor="#A6B658" |THANKSGIVING
====Soumya Sankar====
| bgcolor="#BCD2EE" |NONE
 
| bgcolor="#BCD2EE" |NONE
Title: TBD
|-
 
| bgcolor="#D0D0D0" |December 5
Abstract: TBD
| bgcolor="#A6B658" |Ivan Aidun
 
| bgcolor="#BCD2EE" |Impromptu talk
====Ivan Ongay Valverde, 3pm====
| bgcolor="#BCD2EE" |Caroline is sick today, so Ivan will give an impromptu talk about something.
 
|}
Title: TBD
</center>
 
Abstract: TBD
 
====[Insert Speaker]====
 
Title: TBD
 
Abstract: TBD
 
====[Insert Speaker]====
 
Title: TBD
 
Abstract: TBD
 
====[Insert Speaker]====
 
Title: TBD
 
Abstract: TBD
 
====[Insert Speaker]====
 
Title: TBD
 
Abstract: TBD
 
====[Insert Speaker]====
 
Title: TBD
 
Abstract: TBD
 
=== April 3, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== April 10, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== April 17, Hyun-Jong ===
 
Title: TBD
 
Abstract: TBD
 
=== April 24, TBD ===
 
Title: TBD
 
Abstract: TBD

Latest revision as of 03:08, 7 February 2025

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Thursdays 4:00-4:30pm
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Ivan Aidun, Alex Bonat, Kaiyi Huang, Ethan Schondorf

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Spring 2025

Date Speaker Title Abstract
January 30 Caroline Nunn Watch Caroline eat a donut: an introduction to Morse theory Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.
February 6 Inbo Gottlieb-Fenves Numbers Modulo One For millions of years, people have wondered what subsets of the circle are invariant under multiplication by squares. In this talk, I will tell you the answer.
February 13 CANCELLED NONE NONE
February 20 Chiara Travesset TBA TBA
February 27 Awildo Gutierrez TBA TBA
March 6 TBA TBA TBA
March 13 TBA TBA TBA
March 19 TBA Special Visit Day Talks! TBA
March 20 CANCELLED NONE NONE
March 27 SPRING BREAK NONE NONE
April 3 Emma Hayes TBA TBA
April 10 TBA TBA TBA
April 17 TBA TBA TBA
April 24 TBA TBA TBA
May 1 TBA TBA TBA


Fall 2024

Date Speaker Title Abstract
September 12 Ari Davidovsky 95% of people can't solve this! Image.png

We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.

September 19 CANCELLED NONE NONE
September 26 Mateo Morales Officially petitioning the department to acquire a ping pong table. Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.

I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.

Very approachable if you know what a group is but does require tons of ping pong experience.

October 3 Karthik Ravishankar Incompleteness for the working mathematician In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
October 10 Elizabeth Hankins Mathematical Origami and Flat-Foldability If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
October 17 CANCELLED NONE NONE
October 24 CANCELLED NONE NONE
October 31 Jacob Wood What is the length of a potato pumpkin? How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
November 7 CANCELLED: DISTINGUISHED LECTURE NONE NONE
November 14 Sapir Ben-Shahar Hexaflexagons Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
November 21 Andrew Krenz All concepts are database queries A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
November 28 THANKSGIVING NONE NONE
December 5 Ivan Aidun Impromptu talk Caroline is sick today, so Ivan will give an impromptu talk about something.