Graduate Logic Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
 
(240 intermediate revisions by 10 users not shown)
Line 1: Line 1:
The Graduate Logic Seminar is an informal space where graduate student and professors present topics related to logic which are not necessarly original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.
The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.


* '''When:''' Mondays 4p-5p
* '''When:''' Mondays 3:30-4:30 PM
* '''Where:''' Van Vleck B223.
* '''Where:''' Van Vleck B235
* '''Organizers:''' [https://www.math.wisc.edu/~omer/ Omer Mermelstein]
* '''Organizer:''' Mariya Soskova


The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.
The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact the organizers.


Sign up for the graduate logic seminar mailing list:  join-grad-logic-sem@lists.wisc.edu
<!--Sign up for the graduate logic seminar mailing list:  [mailto:join-grad-logic-sem@lists.wisc.edu join-grad-logic-sem@lists.wisc.edu]-->


== Spring 2025 ==


The seminar will be run as a 1-credit seminar Math 975. In Spring 2025, we will finish last semester's topic on Higher Computability Theory.Once we are done students will present a logic topic of their choice (it could be original work, but does not have to be).  If you are not enrolled but would like to audit it, please contact [mailto:soskova@wisc.edu Mariya Soskova].


== Fall 2019 - Tentative schedule ==
Presentation Schedule: [https://docs.google.com/spreadsheets/d/1uRSaI1edJ5sepz57NV07ohIfBSKL9FgkvJvMAewk1ms/edit?usp=sharing Sign up here.]


=== September 5 - Organizational meeting ===
Notes on Higher Computability Theory: [https://uwmadison.box.com/s/j3xftdj1i70d4lblxhzswhg9e25ajcpq Download the notes here.] You will need your UW-login. Please, do not distribute these notes without permission from the author.


=== September 9 - No seminar ===
<!--Zoom link for remote attendance: https://uwmadison.zoom.us/j/96168027763?pwd=bGdvL3lpOGl6QndQcG5RTFUzY3JXQT09 (Meeting ID: 961 6802 7763, Password: 975f23)-->


=== September 16 - Daniel Belin ===
=== '''January 27 - Organizational Meeting and Sapir Ben-Shahar''' ===
Title: Lattice Embeddings of the m-Degrees and Second Order Arithmetic


Abstract: Lachlan, in a result later refined and clarified by Odifreddi, proved in 1970 that initial segments of the m-degrees can be embedded as an upper semilattice formed as the limit of finite distributive lattices. This allows us to show that the many-one degrees codes satisfiability in second-order arithmetic, due to a later result of Nerode and Shore. We will take a journey through Lachlan's rather complicated construction which sheds a great deal of light on the order-theoretic properties of many-one reducibility.
Mariya Soskova will call for volunteers to sign up for presentations.  


=== September 23 - Daniel Belin ===
Sapir Ben-Shahar will wrap up Section 5.1


Title: Lattice Embeddings of the m-Degrees and Second Order Arithmetic - Continued
=== '''February 3 - Taeyoung Em''' ===


=== September 30 - Josiah Jacobsen-Grocott ===
Taeyoung Em will present Section 5.3.


Title: Scott Rank of Computable Models
=== '''February 10 -  Hongyu Zhu''' ===


Abstract: Infinatary logic extends the notions of first order logic by allowing infinite formulas. Scott's Isomorphism Theorem states that any countable structure can be characterized up to isomorphism by a single countable sentence. Closely related to the complexity of this sentence is what is known as the Scott Rank of the structure. In this talk we restrict our attention to computable models and look at an upper bound on the Scott Rank of such structures.
Hongyu Zhu will present Section 5.3


=== October 7 - Josiah Jacobsen-Grocott ===
=== '''February 17 - Karthik Ravishankar''' ===


Title: Scott Rank of Computable Codels - Continued
'''Title:''' Strong minimal covers and the cupping property


=== October 14 - Tejas Bhojraj I ===
'''Abstract:''' A longstanding question in degree theory has been whether every minimal Turing degree has a strong minimal cover. Meanwhile a strong example of degrees without SMC's are those which have the cupping property. It is known that PA degrees have the cupping property, as do degrees with a certain amount of escaping power. On the other hand, it is known that being weak in the sense of being non DNC and Hyperimmune-free lets you have a SMC. Degrees with the cupping property are closed upwards while it is not known if degrees with SMC are closed downwards.  It is also not known if every degree either has the cupping property or a SMC. In this talk we will review several of these results and present techniques used to build SMCs.


=== October 21 - Tejas Bhojraj II - Date may change ===
=== '''February 24 - Hongyu Zhu''' ===


=== October 28 - Two short talks ===
'''Title:''' tba


Iván Ongay Valverde and James Earnest Hanson
'''Abstract:''' tba


=== November 4 - Two short talks ===
=== '''March 3 - Uri Andrews''' ===
Speakers TBD


=== November 11 - Manlio Valenti I ===
'''Title:''' tba


=== November 18 - Manlio Valenti II ===
'''Abstract:''' tba


=== November 25 - Two short talks ===
=== '''Macrh 10 - Logan Heath''' ===
Speakers TBD


=== December 2 - Iván Ongay Valverde I ===
'''Title:''' tba


=== December 9 - Iván Ongay Valverde II ===
'''Abstract:''' tba


==Previous Years==
 
=== '''Macrh 17 -  Yiqing Wang''' ===
 
'''Title:''' tba
 
'''Abstract:''' tba
 
=== '''Macrh 31 -  Chiara Travesset''' ===
 
'''Title:''' tba
 
'''Abstract:''' tba
 
 
 
== Fall 2024 ==
 
The seminar will be run as a 1-credit seminar Math 975 . In Fall 2024, the topic will be Higher Computability Theory. We will follow notes by Noam Greenberg. If you are not enrolled but would like to audit it, please contact [mailto:soskova@wisc.edu Mariya Soskova].
 
Presentation Schedule: [https://docs.google.com/spreadsheets/d/1ect-dgHdoHOgq4-5BGFiDh6pPThLfDg69Yg__-b_5RY/edit?usp=sharing Sign up here.]
 
Notes: [https://uwmadison.box.com/s/j3xftdj1i70d4lblxhzswhg9e25ajcpq Download the notes here.] You will need your UW-login. Please, do not distribute these notes without permission from the author.
 
<!--Zoom link for remote attendance: https://uwmadison.zoom.us/j/96168027763?pwd=bGdvL3lpOGl6QndQcG5RTFUzY3JXQT09 (Meeting ID: 961 6802 7763, Password: 975f23)-->
 
=== '''September 9 - Organizational Meeting''' ===
 
Mariya Soskova will start with the first sections from the notes.
 
We will then assign speakers to dates and topics.
 
=== '''September 16 -  Sections 1.2-1.4''' ===
 
Kanav Madhura will continue with Sections 1.2-1.4.
 
=== '''September 23 -  Sections 1.3-1.4 and 2.1-2.2''' ===
 
Kanav Madhura will continue with Sections 1.3-1.4. Lucas Duckworth will be ready with Sections 2.1 and 2.2 should there be time.
 
=== '''September 30 -  Sections 2.2 and 2.3-2.5''' ===
 
Lucas Duckworth will finish Section 2.2. Karthik Ravishankar will begin 2.3, 2.4, and 2.5.
=== '''October 7th -  Sections 2.4 and 2.5''' ===
 
Karthik Ravishankar will  finish, 2.4, and 2.5.  Liang Yu will give a talk at 4:00pm.
 
=== '''October 14th -  Sections 2.6 and 2.7''' ===
 
Bjarki Gunnarsson  will present Sections 2.6 and 2.7
 
=== '''October 21th -  Section 3.1''' ===
 
Karthik Ravishankar will present Section 3.1 
 
=== '''October 28th -  Sections 3.2 and 3.3''' ===
 
Karthik Ravishankar will finish Sections 3.2  and John Spoerl will begin Section 3.3
 
=== '''November 4th -  Sections 3.3 and 3.4''' ===
 
John Spoerl will finish Sections 3.3 and 3.4
 
=== '''November 11th -  Section 4.1''' ===
 
Antonion Nakid-Cordero will present Section 4.1
 
=== '''November 19th -  Sections 4.1 and 4.2''' ===
 
Start 4:00PM in VV901! Antonion Nakid-Cordero will continue with Section 4.1, Ang Li will begin Section 4.2.
 
 
=== '''November 25th -  Sections 4.2 and 4.3''' ===
 
Back to the usual time and place. Ang Li will begin Section 4.2.
 
=== '''December 2nd -  Section 4.3''' ===
 
Ang Li will present Section 4.3.
 
=== '''December 9nd -  Section 5.1''' ===
 
Last seminar for this semester. Sapir Ben-Shahar will begin Section 5.1
 
<!-- Template
 
=== '''September 18 - xxx''' ===
'''Title:''' TBA ([https://wiki.math.wisc.edu/images/***.pdf Slides])
 
'''Abstract:''' TBA
 
-->
 
== Previous Years ==


The schedule of talks from past semesters can be found [[Graduate Logic Seminar, previous semesters|here]].
The schedule of talks from past semesters can be found [[Graduate Logic Seminar, previous semesters|here]].

Latest revision as of 13:19, 11 February 2025

The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.

  • When: Mondays 3:30-4:30 PM
  • Where: Van Vleck B235
  • Organizer: Mariya Soskova

The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact the organizers.


Spring 2025

The seminar will be run as a 1-credit seminar Math 975. In Spring 2025, we will finish last semester's topic on Higher Computability Theory.Once we are done students will present a logic topic of their choice (it could be original work, but does not have to be). If you are not enrolled but would like to audit it, please contact Mariya Soskova.

Presentation Schedule: Sign up here.

Notes on Higher Computability Theory: Download the notes here. You will need your UW-login. Please, do not distribute these notes without permission from the author.


January 27 - Organizational Meeting and Sapir Ben-Shahar

Mariya Soskova will call for volunteers to sign up for presentations.

Sapir Ben-Shahar will wrap up Section 5.1

February 3 - Taeyoung Em

Taeyoung Em will present Section 5.3.

February 10 - Hongyu Zhu

Hongyu Zhu will present Section 5.3

February 17 - Karthik Ravishankar

Title: Strong minimal covers and the cupping property

Abstract: A longstanding question in degree theory has been whether every minimal Turing degree has a strong minimal cover. Meanwhile a strong example of degrees without SMC's are those which have the cupping property. It is known that PA degrees have the cupping property, as do degrees with a certain amount of escaping power. On the other hand, it is known that being weak in the sense of being non DNC and Hyperimmune-free lets you have a SMC. Degrees with the cupping property are closed upwards while it is not known if degrees with SMC are closed downwards. It is also not known if every degree either has the cupping property or a SMC. In this talk we will review several of these results and present techniques used to build SMCs.

February 24 - Hongyu Zhu

Title: tba

Abstract: tba

March 3 - Uri Andrews

Title: tba

Abstract: tba

Macrh 10 - Logan Heath

Title: tba

Abstract: tba


Macrh 17 - Yiqing Wang

Title: tba

Abstract: tba

Macrh 31 - Chiara Travesset

Title: tba

Abstract: tba


Fall 2024

The seminar will be run as a 1-credit seminar Math 975 . In Fall 2024, the topic will be Higher Computability Theory. We will follow notes by Noam Greenberg. If you are not enrolled but would like to audit it, please contact Mariya Soskova.

Presentation Schedule: Sign up here.

Notes: Download the notes here. You will need your UW-login. Please, do not distribute these notes without permission from the author.


September 9 - Organizational Meeting

Mariya Soskova will start with the first sections from the notes.

We will then assign speakers to dates and topics.

September 16 - Sections 1.2-1.4

Kanav Madhura will continue with Sections 1.2-1.4.

September 23 - Sections 1.3-1.4 and 2.1-2.2

Kanav Madhura will continue with Sections 1.3-1.4. Lucas Duckworth will be ready with Sections 2.1 and 2.2 should there be time.

September 30 - Sections 2.2 and 2.3-2.5

Lucas Duckworth will finish Section 2.2. Karthik Ravishankar will begin 2.3, 2.4, and 2.5.

October 7th - Sections 2.4 and 2.5

Karthik Ravishankar will finish, 2.4, and 2.5. Liang Yu will give a talk at 4:00pm.

October 14th - Sections 2.6 and 2.7

Bjarki Gunnarsson will present Sections 2.6 and 2.7

October 21th - Section 3.1

Karthik Ravishankar will present Section 3.1

October 28th - Sections 3.2 and 3.3

Karthik Ravishankar will finish Sections 3.2 and John Spoerl will begin Section 3.3

November 4th - Sections 3.3 and 3.4

John Spoerl will finish Sections 3.3 and 3.4

November 11th - Section 4.1

Antonion Nakid-Cordero will present Section 4.1

November 19th - Sections 4.1 and 4.2

Start 4:00PM in VV901! Antonion Nakid-Cordero will continue with Section 4.1, Ang Li will begin Section 4.2.


November 25th - Sections 4.2 and 4.3

Back to the usual time and place. Ang Li will begin Section 4.2.

December 2nd - Section 4.3

Ang Li will present Section 4.3.

December 9nd - Section 5.1

Last seminar for this semester. Sapir Ben-Shahar will begin Section 5.1


Previous Years

The schedule of talks from past semesters can be found here.