AMS Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
 
(96 intermediate revisions by 14 users not shown)
Line 1: Line 1:
The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.


* '''When:''' Wednesdays, 3:20 PM – 3:50 PM
* '''When:''' Thursdays 4:00-4:30pm
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen
* '''Organizers:''' Ivan Aidun, Alex Bonat, Kaiyi Huang, Ethan Schondorf


Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.


The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].


== Fall 2019 ==
== Spring 2025 ==
<center>
{| cellspacing="5" cellpadding="14" border="0" style="color:black; font-size:120%"
! align="center" width="200" bgcolor="#D0D0D0" |'''Date'''
! align="center" width="200" bgcolor="#A6B658" |'''Speaker'''
! align="center" width="300" bgcolor="#BCD2EE" |'''Title'''
! align="center" width="400" bgcolor="#BCD2EE" |'''Abstract'''
|-
| bgcolor="#D0D0D0" |January 30
| bgcolor="#A6B658" |Caroline Nunn
| bgcolor="#BCD2EE" |Watch Caroline eat a donut: an introduction to Morse theory
| bgcolor="#BCD2EE" |Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.
|-
| bgcolor="#D0D0D0" |February 6
| bgcolor="#A6B658" |Inbo Gottlieb-Fenves
| bgcolor="#BCD2EE" |Numbers Modulo One
| bgcolor="#BCD2EE" |For millions of years, people have wondered what subsets of the circle are invariant under multiplication by squares. In this talk, I will tell you the answer.
|-
| bgcolor="#D0D0D0" |February 13
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |February 20
| bgcolor="#A6B658" |Chiara Travesset
| bgcolor="#BCD2EE" |The Fold and Cut Theorem
| bgcolor="#BCD2EE" |The fold and cut theorem states that any shape consisting of straight sides can be cut from a piece of paper with a single cut by flat folding the paper. Come prepared to do a lot of folding and not a lot of cutting.
|-
| bgcolor="#D0D0D0" |February 27
| bgcolor="#A6B658" |Awildo Gutierrez
| bgcolor="#BCD2EE" |Symmetry Arguments in Analysis
| bgcolor="#BCD2EE" |Inequalities are hard. But sometimes, you can use symmetries of your objects to upgrade estimates that are much easier to show. Come watch me prove some useful inequalities with this idea. No knowledge of analysis is necessary, just some linear algebra and calculus.
|-
| bgcolor="#D0D0D0" |March 6
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |March 13
| bgcolor="#A6B658" |Eiki Norizuki
| bgcolor="#BCD2EE" |On a theorem of Fermat
| bgcolor="#BCD2EE" |A famous theorem of Fermat says that primes that are 1 mod 4 can be written as a sum of two squares. The usual proof that most of us encounter uses some facts about the Gaussian integers Z[i]. I want to talk about an alternative proof that uses windmills.
|-
| bgcolor="#D0D0D0" |March 19
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |Special Visit Day Talks!
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |March 20
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |March 27
| bgcolor="#A6B658" |SPRING BREAK
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |April 3
| bgcolor="#A6B658" |Emma Hayes
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |April 10
| bgcolor="#A6B658" |Daniel Levitin
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |April 17
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |April 24
| bgcolor="#A6B658" |TBA
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|-
| bgcolor="#D0D0D0" |May 1
| bgcolor="#A6B658" |Ann Bigelow
| bgcolor="#BCD2EE" |TBA
| bgcolor="#BCD2EE" |TBA
|}
</center>


=== October 9, Brandon Boggess===
== Fall 2024 ==
<center>
{| cellspacing="5" cellpadding="14" border="0" style="color:black; font-size:120%"
! align="center" width="200" bgcolor="#D0D0D0" |'''Date'''
! align="center" width="200" bgcolor="#A6B658" |'''Speaker'''
! align="center" width="300" bgcolor="#BCD2EE" |'''Title'''
! align="center" width="400" bgcolor="#BCD2EE" |'''Abstract'''
|-
| bgcolor="#D0D0D0" |September 12
| bgcolor="#A6B658" |Ari Davidovsky
| bgcolor="#BCD2EE" |95% of people can't solve this!
| bgcolor="#BCD2EE" | [[File:Image.png|360px]]


Title: An Application of Elliptic Curves to the Theory of Internet Memes
We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.
|-
| bgcolor="#D0D0D0" |September 19
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |September 26
| bgcolor="#A6B658" |Mateo Morales
| bgcolor="#BCD2EE" |Officially petitioning the department to acquire a ping pong table.
| bgcolor="#BCD2EE" |Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.
I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.


Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!
Very approachable if you know what a group is but does require tons of ping pong experience.
 
|-
[[File:Thumbnail fruit meme.png]]
| bgcolor="#D0D0D0" |October 3
 
| bgcolor="#A6B658" |Karthik Ravishankar
=== October 16, Jiaxin Jin===
| bgcolor="#BCD2EE" |Incompleteness for the working mathematician
 
| bgcolor="#BCD2EE" |In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
Title: Persistence and global stability for biochemical reaction-diffusion systems
|-
 
| bgcolor="#D0D0D0" |October 10
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.
| bgcolor="#A6B658" |Elizabeth Hankins
 
| bgcolor="#BCD2EE" |Mathematical Origami and Flat-Foldability
=== October 23, Erika Pirnes===
| bgcolor="#BCD2EE" |If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
 
|-
(special edition: carrot seminar)
| bgcolor="#D0D0D0" |October 17
 
| bgcolor="#A6B658" |CANCELLED
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)
| bgcolor="#BCD2EE" |NONE
 
| bgcolor="#BCD2EE" |NONE
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.
|-
 
| bgcolor="#D0D0D0" |October 24
=== October 30, Yunbai Cao===
| bgcolor="#A6B658" |CANCELLED
 
| bgcolor="#BCD2EE" |NONE
Title: Kinetic theory in bounded domains
| bgcolor="#BCD2EE" |NONE
 
|-
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.
| bgcolor="#D0D0D0" |October 31
 
| bgcolor="#A6B658" |Jacob Wood
=== November 6, Tung Nguyen===
| bgcolor="#BCD2EE" |What is the length of a <s>potato</s> pumpkin?
 
| bgcolor="#BCD2EE" |How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
Title: Introduction to Chemical Reaction Network
|-
 
| bgcolor="#D0D0D0" |November 7
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.
| bgcolor="#A6B658" |CANCELLED: DISTINGUISHED LECTURE
 
| bgcolor="#BCD2EE" |NONE
=== November 13, Stephen Davis===
| bgcolor="#BCD2EE" |NONE
 
|-
Title:
| bgcolor="#D0D0D0" |November 14
 
| bgcolor="#A6B658" |Sapir Ben-Shahar
Abstract: We'll talk about how to see random motions from different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, using the so-called "storytelling metric." There will be animations! 🎉
| bgcolor="#BCD2EE" |Hexaflexagons
 
| bgcolor="#BCD2EE" |Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
=== November 20, Colin Crowley===
|-
 
| bgcolor="#D0D0D0" |November 21
Title: TBD
| bgcolor="#A6B658" |Andrew Krenz
 
| bgcolor="#BCD2EE" |All concepts are database queries
Abstract: TBD
| bgcolor="#BCD2EE" |A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
 
|-
=== December 4, Xiaocheng Li===
| bgcolor="#D0D0D0" |November 28
 
| bgcolor="#A6B658" |THANKSGIVING
Title: TBD
| bgcolor="#BCD2EE" |NONE
 
| bgcolor="#BCD2EE" |NONE
Abstract: TBD
|-
 
| bgcolor="#D0D0D0" |December 5
=== December 11, Chaojie Yuan===
| bgcolor="#A6B658" |Ivan Aidun
 
| bgcolor="#BCD2EE" |Impromptu talk
Title: TBD
| bgcolor="#BCD2EE" |Caroline is sick today, so Ivan will give an impromptu talk about something.
 
|}
Abstract: TBD
</center>

Latest revision as of 20:23, 10 March 2025

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Thursdays 4:00-4:30pm
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Ivan Aidun, Alex Bonat, Kaiyi Huang, Ethan Schondorf

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Spring 2025

Date Speaker Title Abstract
January 30 Caroline Nunn Watch Caroline eat a donut: an introduction to Morse theory Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.
February 6 Inbo Gottlieb-Fenves Numbers Modulo One For millions of years, people have wondered what subsets of the circle are invariant under multiplication by squares. In this talk, I will tell you the answer.
February 13 CANCELLED NONE NONE
February 20 Chiara Travesset The Fold and Cut Theorem The fold and cut theorem states that any shape consisting of straight sides can be cut from a piece of paper with a single cut by flat folding the paper. Come prepared to do a lot of folding and not a lot of cutting.
February 27 Awildo Gutierrez Symmetry Arguments in Analysis Inequalities are hard. But sometimes, you can use symmetries of your objects to upgrade estimates that are much easier to show. Come watch me prove some useful inequalities with this idea. No knowledge of analysis is necessary, just some linear algebra and calculus.
March 6 CANCELLED NONE NONE
March 13 Eiki Norizuki On a theorem of Fermat A famous theorem of Fermat says that primes that are 1 mod 4 can be written as a sum of two squares. The usual proof that most of us encounter uses some facts about the Gaussian integers Z[i]. I want to talk about an alternative proof that uses windmills.
March 19 TBA Special Visit Day Talks! TBA
March 20 CANCELLED NONE NONE
March 27 SPRING BREAK NONE NONE
April 3 Emma Hayes TBA TBA
April 10 Daniel Levitin TBA TBA
April 17 TBA TBA TBA
April 24 TBA TBA TBA
May 1 Ann Bigelow TBA TBA

Fall 2024

Date Speaker Title Abstract
September 12 Ari Davidovsky 95% of people can't solve this! Image.png

We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.

September 19 CANCELLED NONE NONE
September 26 Mateo Morales Officially petitioning the department to acquire a ping pong table. Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.

I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.

Very approachable if you know what a group is but does require tons of ping pong experience.

October 3 Karthik Ravishankar Incompleteness for the working mathematician In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
October 10 Elizabeth Hankins Mathematical Origami and Flat-Foldability If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
October 17 CANCELLED NONE NONE
October 24 CANCELLED NONE NONE
October 31 Jacob Wood What is the length of a potato pumpkin? How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
November 7 CANCELLED: DISTINGUISHED LECTURE NONE NONE
November 14 Sapir Ben-Shahar Hexaflexagons Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
November 21 Andrew Krenz All concepts are database queries A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
November 28 THANKSGIVING NONE NONE
December 5 Ivan Aidun Impromptu talk Caroline is sick today, so Ivan will give an impromptu talk about something.