AMS Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(19 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.


* '''When:''' Wednesdays, 3:30 PM – 4:00 PM
* '''When:''' Thursdays 4:00-4:30pm
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' Ivan Aidun, Kaiyi Huang, Ethan Schondorf  
* '''Organizers:''' Ivan Aidun, Kaiyi Huang, Ethan Schondorf  
Line 9: Line 9:
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].


== Fall 2023==
== Fall 2024 ==
<center>
{| cellspacing="5" cellpadding="14" border="0" style="color:black; font-size:120%"
! align="center" width="200" bgcolor="#D0D0D0" |'''Date'''
! align="center" width="200" bgcolor="#A6B658" |'''Speaker'''
! align="center" width="300" bgcolor="#BCD2EE" |'''Title'''
! align="center" width="400" bgcolor="#BCD2EE" |'''Abstract'''
|-
| bgcolor="#D0D0D0" |September 12
| bgcolor="#A6B658" |Ari Davidovsky
| bgcolor="#BCD2EE" |95% of people can't solve this!
| bgcolor="#BCD2EE" | [[File:Image.png|360px]]


===September 7, Alex Mine===
We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.
Title: My Favorite Fact about Continued Fractions
|-
| bgcolor="#D0D0D0" |September 19
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |September 26
| bgcolor="#A6B658" |Mateo Morales
| bgcolor="#BCD2EE" |Officially petitioning the department to acquire a ping pong table.
| bgcolor="#BCD2EE" |Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.
I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.


===September 14, Mei Rose Connor ===
Very approachable if you know what a group is but does require tons of ping pong experience.
Title: All Things Necessary and Possible: an introduction to the Kripke semantics of modal logic
|-
Abstract: Modal logic is a branch of formal logic with far–reaching applications to fields such as philosophy, mathematics, computer science, and other parts of logic itself. It deals with which propositions, some of which are necessarily true (in the words of philosophy, a priori) and some of which are possibly true (analogously, a posteriori). But this will not be a philosophy talk. This talk will cover the notation, syntax, and one choice of semantics for modal logic known as the Kripke semantics. The Kripke semantics is a powerful tool that allows us to make connections between modal statements and first–order (or higher–order) logic ones. Along the way, the talk will explore how the simple symbols □ and ♢ can help to model ethics, represent the knowledge of individuals and even lead to an elegant gateway into the First Incompleteness result.
| bgcolor="#D0D0D0" |October 3
 
| bgcolor="#A6B658" |Karthik Ravishankar
===September 21, Sun Woo Park ===
| bgcolor="#BCD2EE" |Incompleteness for the working mathematician
Title: What I did in my military service II (A functorial formulation of deep learning algorithms)
| bgcolor="#BCD2EE" |In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
Abstract: Even though deep learning algorithms (say convolutional neural networks, graph neural networks, and attention-transformers) show outstanding performances in executing certain tasks, there are also certain tasks that these algorithms do not perform well. We'll try to give a naive attempt to understand why such problems can occur. Similar to last semester, I will once again recall what I was interested in during the last few months of my 3-year military service in South Korea.
|-
 
| bgcolor="#D0D0D0" |October 10
===September 28, Caroline Nunn===
| bgcolor="#A6B658" |Elizabeth Hankins
Title: Phinary Numbers
| bgcolor="#BCD2EE" |Mathematical Origami and Flat-Foldability
Abstract: Everyone and their grandmother knows about binary numbers.  But do you know about phinary numbers?  In this talk, we will explore the fun consequences of using an irrational number base system. We will define phinary representations of real numbers and explore which real numbers can be written using finite or recurring phinary representations. 
| bgcolor="#BCD2EE" |If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
 
|-
===October 5, Gabriella Brown===
| bgcolor="#D0D0D0" |October 17
Title: Topological Entropy in Shift Spaces
| bgcolor="#A6B658" |CANCELLED
Abstract: Entropy is a concept that many STEM disciplines engage with, which results in many different perspectives on what exactly it is. This talk will introduce the perspective of symbolic dynamics by defining shifts of finite type and showing how to compute their topological entropy.
| bgcolor="#BCD2EE" |NONE
 
| bgcolor="#BCD2EE" |NONE
===October 12, Nakid Cordero===
|-
Title: How to prove the Riemann Hypothesis: a logician's approach
| bgcolor="#D0D0D0" |October 24
Abstract: ''Hint:'' ''Prove that you cannot disprove it.''
| bgcolor="#A6B658" |CANCELLED
 
| bgcolor="#BCD2EE" |NONE
===October 19, Ari Davidovsky===
| bgcolor="#BCD2EE" |NONE
Title: Using Ultrafilters in Additive Combinatorics
|-
Abstract: The goal of this talk is to introduce the idea of ultrafilters and show how they help us prove some cool results from additive combinatorics. The main result proved will be Hindman's Theorem which states if we partition the natural numbers into finitely many sets then one of these sets A contains an infinite subset B such that the sum of any finitely many distinct elements in B will always be in A.
| bgcolor="#D0D0D0" |October 31
 
| bgcolor="#A6B658" |Jacob Wood
===October 26, Otto Baier===
| bgcolor="#BCD2EE" |What is the length of a <s>potato</s> pumpkin?
Title: "Circulant Matrices and the Discrete Fourier Transform"
| bgcolor="#BCD2EE" |How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
Abstract: "Have you ever tried to use a finite difference method on a differential equation with periodic boundary conditions and said, 'I wonder how I could find the eigenvalues of this matrix analytically'? No? Well either way, you're going to find out!
|-
 
| bgcolor="#D0D0D0" |November 7
===November 2, Speaker TBA===
| bgcolor="#A6B658" |CANCELLED: DISTINGUISHED LECTURE
Title:
| bgcolor="#BCD2EE" |NONE
Abstract:
| bgcolor="#BCD2EE" |NONE
 
|-
===November 9, Owen Goff===
| bgcolor="#D0D0D0" |November 14
Title:
| bgcolor="#A6B658" |Sapir Ben-Shahar
Abstract:
| bgcolor="#BCD2EE" |Hexaflexagons
 
| bgcolor="#BCD2EE" |Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
===November 16, Speaker TBA===
|-
Title:
| bgcolor="#D0D0D0" |November 21
Abstract:
| bgcolor="#A6B658" |Andrew Krenz
 
| bgcolor="#BCD2EE" |All concepts are database queries
===November 23, CANCELLED FOR THANKSGIVING===
| bgcolor="#BCD2EE" |A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
 
|-
===November 30, Speaker TBA===
| bgcolor="#D0D0D0" |November 28
Title:
| bgcolor="#A6B658" |THANKSGIVING
Abstract:
| bgcolor="#BCD2EE" |NONE
 
| bgcolor="#BCD2EE" |NONE
===December 7, Speaker TBA===
|-
Title:
| bgcolor="#D0D0D0" |December 5
Abstract:
| bgcolor="#A6B658" |Caroline Nunn
 
| bgcolor="#BCD2EE" |Watch Caroline eat a donut: an introduction to Morse theory
===December 14, Maybe Cancelled?===
| bgcolor="#BCD2EE" |Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.
|}
</center>

Latest revision as of 19:14, 2 December 2024

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Thursdays 4:00-4:30pm
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Ivan Aidun, Kaiyi Huang, Ethan Schondorf

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Fall 2024

Date Speaker Title Abstract
September 12 Ari Davidovsky 95% of people can't solve this! Image.png

We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.

September 19 CANCELLED NONE NONE
September 26 Mateo Morales Officially petitioning the department to acquire a ping pong table. Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.

I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.

Very approachable if you know what a group is but does require tons of ping pong experience.

October 3 Karthik Ravishankar Incompleteness for the working mathematician In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
October 10 Elizabeth Hankins Mathematical Origami and Flat-Foldability If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
October 17 CANCELLED NONE NONE
October 24 CANCELLED NONE NONE
October 31 Jacob Wood What is the length of a potato pumpkin? How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
November 7 CANCELLED: DISTINGUISHED LECTURE NONE NONE
November 14 Sapir Ben-Shahar Hexaflexagons Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
November 21 Andrew Krenz All concepts are database queries A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
November 28 THANKSGIVING NONE NONE
December 5 Caroline Nunn Watch Caroline eat a donut: an introduction to Morse theory Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.