Algebra and Algebraic Geometry Seminar Fall 2022: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
Line 41: Line 41:
|Rodriguez/Wang
|Rodriguez/Wang
([https://people.math.wisc.edu/~csimpson6/activities/matroidsday/ Matroids Day])
([https://people.math.wisc.edu/~csimpson6/activities/matroidsday/ Matroids Day])
|
|-
|December 2
|Ayah Almousa
|GL-Equivariant resolutions over Veronese Rings
|Erman/Sobieska
|
|
|-
|-

Revision as of 05:09, 30 November 2022

The Seminar takes place on Fridays at 2:30 pm, either virtually (via Zoom) or in person in room B325 Van Vleck.

Algebra and Algebraic Geometry Mailing List

  • Please join the AGS mailing list by sending an email to ags+join@g-groups.wisc.edu to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).

Fall 2022 Schedule

date speaker title host/link to talk
October 7th TBA TBA Reserved for the arithmetic geometry workshop
October 14th Thomas Yahl Computing Galois groups of finite Fano problems Rodriguez
October 21st Lino Amorim Morita invariance of Categorical Enumerative Invariants Andrei
November 4th Chris Eur How or when do matroids behave like positive vector bundles?

(Special Location in Birge Hall 350)

Rodriguez/Wang

(Matroids Day)


December 2 Ayah Almousa GL-Equivariant resolutions over Veronese Rings Erman/Sobieska

Abstracts

Thomas Yahl (TAMU)

Computing Galois groups of finite Fano problems

A Fano problem consists of enumerating linear spaces of a fixed dimension on a variety, generalizing the classical problem of the 27 lines on a smooth cubic surface. Those Fano problems with finitely many linear spaces have an associated Galois group that acts on these linear spaces and controls the complexity of computing them in coordinates via radicals. Galois groups of Fano problems have been studied both classically and modernly and have been determined in some special cases. We use computational tools to prove that several Fano problems of moderate size have Galois group equal to the full symmetric group, each of which were previously unknown.

Lino Amorim (KSU)

Morita invariance of Categorical Enumerative Invariants

Caldararu-Costello-Tu defined Categorical Enumerative Invariants (CEI) as a set of invariants associated to a cyclic A-infinity category (with some extra conditions/data), that resemble the Gromov-Witten invariants in symplectic geometry. In this talk I will explain how one can define these invariants for Calabi-Yau A-infinity categories - a homotopy invariant version of cyclic - and then show the CEI are Morita invariant. This has applications to Mirror Symmetry and Algebraic Geometry.

Chris Eur (Harvard)

How or when do matroids behave like positive vector bundles?

Motivated by certain toric vector bundles on a toric variety, we introduce "tautological classes of matroids" as a new geometric model for studying matroids. We describe how it unifies, recovers, and extends various results from previous geometric models of matroids. We then explain how it raises several new questions that probe the boundary between combinatorics and algebraic geometry, and discuss how these new questions relate to older questions in matroid theory.