NTSGrad Fall 2018/Abstracts: Difference between revisions
Soumyasankar (talk | contribs) No edit summary |
Soumyasankar (talk | contribs) No edit summary |
||
Line 50: | Line 50: | ||
<br> | <br> | ||
== | == Oct 2 == | ||
<center> | <center> | ||
Line 61: | Line 61: | ||
| bgcolor="#BCD2EE" | | | bgcolor="#BCD2EE" | | ||
The streets are often dangerous and to survive them one must pick up some basic skills. I will talk about some basic survival skills for the streets of Etale Cohomology. | The streets are often dangerous and to survive them one must pick up some basic skills. I will talk about some basic survival skills for the streets of Etale Cohomology. | ||
|} | |||
</center> | |||
<br> | |||
== Oct 9 == | |||
<center> | |||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | |||
|- | |||
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Qiao He''' | |||
|- | |||
| bgcolor="#BCD2EE" align="center" | ''Basics of Trace Formula'' | |||
|- | |||
| bgcolor="#BCD2EE" | | |||
This will be a preparatory talk for Thursday's talk. The main goal is to introduce the basic ideas behind the trace formula. Since its statement is mainly formulated in terms of representation theory, I will introduce some notions in representation theory first and explain why number theorists care about it. Then I will give the general statement of trace formula and hopefully do some nontrivial examples. If time allows, I will mention some recent applications of the trace formula in the GGP conjecture, which is a vast generalization of Waldspurger's formula and the Gross-Zagier formula. | |||
|} | |} | ||
</center> | </center> | ||
<br> | <br> |
Revision as of 19:28, 8 October 2018
This page contains the titles and abstracts for talks scheduled in the Fall 2018 semester. To go back to the main GNTS page, click here.
Sept 11
Brandon Boggess |
Praise Genus |
We will explore topological constraints on the number of rational solutions to a polynomial equation, giving a sketch of Faltings's proof of the Mordell conjecture. |
Sept 18
Solly Parenti |
Asymptotic Equidistribution of Hecke Eigenvalues |
We will talk about Serre's results of the equidistribution of Hecke eigenvalues, wading very slowly through the analysis. |
Sept 25
Asvin Gothandaraman |
Growth of class numbers in [math]\displaystyle{ \mathbb{Z}_p }[/math] extensions |
I will explain how class numbers grow in a certain increasing sequence of number fields, why one should expect it based on an analogy with the function field case and the broad context in which this result sits. Time permitting, I will sketch a proof. |
Oct 2
Soumya Sankar |
Etale Cohomology: the Streets |
The streets are often dangerous and to survive them one must pick up some basic skills. I will talk about some basic survival skills for the streets of Etale Cohomology. |
Oct 9
Qiao He |
Basics of Trace Formula |
This will be a preparatory talk for Thursday's talk. The main goal is to introduce the basic ideas behind the trace formula. Since its statement is mainly formulated in terms of representation theory, I will introduce some notions in representation theory first and explain why number theorists care about it. Then I will give the general statement of trace formula and hopefully do some nontrivial examples. If time allows, I will mention some recent applications of the trace formula in the GGP conjecture, which is a vast generalization of Waldspurger's formula and the Gross-Zagier formula. |