Applied/ACMS/absS11
Cynthia Vinzant, UC Berkeley
The central curve in linear programming |
The central curve of a linear program is an algebraic curve specified by linear and quadratic constraints arising from complementary slackness. It is the union of the various central paths for minimizing or maximizing the cost function over any region in the associated hyperplane arrangement. We determine the degree, arithmetic genus and defining prime ideal of the central curve, thereby answering a question of Bayer and Lagarias. These invariants, along with the degree of the Gauss image of the curve, are expressed in terms of the matroid of the input matrix. Extending work of Dedieu, Malajovich and Shub, this yields an instance-specific bound on the total curvature of the central path, a quantity relevant for interior point methods. The global geometry of central curves is studied in detail. |
József Farkas, University of Stirling, Scotland
Analysis of a size-structured cannibalism model with infinite dimensional environmental feedback
|
First I will give a brief introduction to structured population dynamics. Then I will consider a size-structured cannibalism model with the model ingredients depending on size (ranging over an infinite domain) and on a general function of the standing population (environmental feedback). Our focus is on the asymptotic behavior of the system. We show how the point spectrum of the linearised semigroup generator can be characterized in the special case of a separable attack rate and establish a general instability result. Further spectral analysis allows us to give conditions for asynchronous exponential growth of the linear semigroup. |
Tim Reluga, Penn State University
Title |
Abstract |
Ellen Zweibel, UW-Madison (Astronomy)
Title |
Abstract |
Vageli Coutsias, University of New Mexico
Title |
Abstract |
Organizer contact information
Archived semesters
Return to the Applied and Computational Mathematics Seminar Page
Return to the Applied Mathematics Group Page