Applied/ACMS/absS12
Saverio Spagnolie, Brown
Hydrodynamics of Self-Propulsion Near a Boundary: Construction of a Numerical and Asymptotic Toolbox
|
The swimming kinematics and trajectories of many microorganisms are altered by the presence of nearby boundaries, be they solid or deformable, and often in perplexing fashion. When an organism's swimming dynamics vary near such boundaries a question arises naturally: is the change in behavior fluid mechanical, biological, or perhaps due to other physical laws? We isolate the first possibility by exploring a far-field description of swimming organisms, providing a general framework for studying the fluid-mediated modifications to swimming trajectories. Using the simplified model we consider trapped/escape trajectories and equilibria for model organisms of varying shape and propulsive activity. This framework may help to explain surprising behaviors observed in the swimming of many microorganisms and synthetic micro-swimmers. Along the way, we will discuss the numerical tools constructed to analyze the problem of current interest, but which have considerable potential for more general applicability. |
Ari Stern, UC San Diego
Numerical analysis beyond Flatland: semilinear PDEs and problems on manifolds
|
TBA |
Mike Cullen, Met. Office, UK
TBA
|
TBA |
Ricardo Cortez, Tulane
TBA
|
TBA |
Organizer contact information
Archived semesters
- Spring 2011
- Fall 2010
- Spring 2010
- Fall 2009
- Spring 2009
- Fall 2008
- Spring 2008
- Fall 2007
- Spring 2007
- Fall 2006
Return to the Applied and Computational Mathematics Seminar Page
Return to the Applied Mathematics Group Page