Applied/ACMS/absF10
Gheorghe Craciun, UW-Mathematics
Mathematical results arising from systems biology |
We describe new sufficient conditions for global injectivity of general nonlinear functions, necessary and sufficient conditions for global injectivity of polynomial functions, and related criteria for uniqueness of equilibria in nonlinear dynamical systems. Some of these criteria are graph-theoretical, others are checked using symbolic computation. We also mention some applications of these methods in the study of Bezier curves and patches, and other types of manifolds used in geometric modeling. Also, we discuss some criteria for persistence and boundedness of trajectories in polynomial or power-law dynamical systems. All these seemingly unrelated results have been inspired by the study of mathematical models in systems biology. |
Jean-Marc Vanden-Broeck, UW-Mathematics
Title |
Abstract. |
Thierry Goudon, INRIA-Lille, France
Title |
Abstract. |
Vageli Coutsias, University of New Mexico
Title |
Abstract. |
Anne Gelb, Arizona State University
Title |
Abstract. |
Organizer contact information
Archived semesters
Return to the Applied and Computational Mathematics Seminar Page
Return to the Applied Mathematics Group Page