Difference between revisions of "AMS Student Chapter Seminar"

From UW-Math Wiki
Jump to navigation Jump to search
 
(62 intermediate revisions by 15 users not shown)
Line 1: Line 1:
The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.
+
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.
  
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM
+
* '''When:''' Wednesdays, 3:30 PM – 4:00 PM
 
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
 
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen
+
* '''Organizers:''' [https://people.math.wisc.edu/~ywu495/ Yandi Wu], Maya Banks
  
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
+
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
  
 
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
 
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
  
== Fall 2019 ==
+
== Fall 2021 ==
  
=== October 9, Brandon Boggess===
+
=== September 29, John Cobb ===
  
Title: An Application of Elliptic Curves to the Theory of Internet Memes
+
Title: Rooms on a Sphere
  
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!
+
Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.
  
[[File:Thumbnail fruit meme.png]]
+
=== October 6, Karan Srivastava ===
  
=== October 16, Jiaxin Jin===
+
Title: An 'almost impossible' puzzle and group theory
  
Title: Persistence and global stability for biochemical reaction-diffusion systems
+
Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.
  
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.
+
=== October 13, John Yin ===
  
=== October 23, Erika Pirnes===
+
Title: TBA
  
(special edition: carrot seminar)
+
Abstract: TBA
  
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)
+
=== October 20, Varun Gudibanda ===
  
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.
+
Title: TBA
  
=== October 30, Yunbai Cao===
+
Abstract: TBA
  
Title: Kinetic theory in bounded domains
+
=== October 27, Andrew Krenz ===
  
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert Sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A realive new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.
+
Title: The 3-sphere via the Hopf fibration
  
=== November 6, Tung Nguyen===
+
Abstract: The Hopf fibration is a map from $S^3$ to $S^2$.  The preimage (or fiber) of every point under this map is a copy of $S^1$.  In this talk I will explain exactly how these circles “fit together” inside the 3-sphere.  Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors.  If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.
  
Title: TBD
 
  
Abstract: TBD
+
=== November 3, TBA ===
  
=== November 13, Stephen Davis===
+
Title: TBA
  
Title: Random Motion
+
Abstract: TBA
  
Abstract: We'll talk about how to see random motions from different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, which will help us see things we couldn't see before.
+
=== November 10, TBA ===
  
=== November 20, Colin Crowley===
+
Title: TBA
  
Title: TBD
+
Abstract: TBA
  
Abstract: TBD
+
=== November 17, TBA ===
  
=== December 4, Xiaocheng Li===
+
Title: TBA
  
Title: TBD
+
Abstract: TBA
  
Abstract: TBD
+
=== November 24, TBA ===
  
=== December 11, Chaojie Yuan===
+
Title: TBA
  
Title: TBD
+
Abstract: TBA
  
Abstract: TBD
+
=== December 1, TBA ===
 +
 
 +
Title: TBA
 +
 
 +
Abstract: TBA
 +
 
 +
=== December 8, TBA ===
 +
 
 +
Title: TBA
 +
 
 +
Abstract: TBA

Latest revision as of 15:39, 1 October 2021

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Wednesdays, 3:30 PM – 4:00 PM
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Yandi Wu, Maya Banks

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Fall 2021

September 29, John Cobb

Title: Rooms on a Sphere

Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.

October 6, Karan Srivastava

Title: An 'almost impossible' puzzle and group theory

Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.

October 13, John Yin

Title: TBA

Abstract: TBA

October 20, Varun Gudibanda

Title: TBA

Abstract: TBA

October 27, Andrew Krenz

Title: The 3-sphere via the Hopf fibration

Abstract: The Hopf fibration is a map from $S^3$ to $S^2$. The preimage (or fiber) of every point under this map is a copy of $S^1$. In this talk I will explain exactly how these circles “fit together” inside the 3-sphere. Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors. If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.


November 3, TBA

Title: TBA

Abstract: TBA

November 10, TBA

Title: TBA

Abstract: TBA

November 17, TBA

Title: TBA

Abstract: TBA

November 24, TBA

Title: TBA

Abstract: TBA

December 1, TBA

Title: TBA

Abstract: TBA

December 8, TBA

Title: TBA

Abstract: TBA