# AMS Student Chapter Seminar: Difference between revisions

Line 27: | Line 27: | ||

=== February 15, Paul Tveite === | === February 15, Paul Tveite === | ||

Fun with Hamel Bases! | Title: Fun with Hamel Bases! | ||

Abstract: If we view the real numbers as a vector field over the rationals, then of course they have a basis (assuming the AOC). This is called a Hamel basis and allows us to do some cool things. Among other things, we will define two periodic functions that sum to the identity function. | |||

=== February 22, TBA === | === February 22, TBA === |

## Revision as of 20:08, 7 February 2017

The AMS Student Chapter Seminar is an informal, graduate student-run seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.

**When:**Wednesdays, 3:30 PM – 4:00 PM**Where:**Van Vleck, 9th floor lounge (unless otherwise announced)**Organizers:**Daniel Hast, Ryan Julian, Cullen McDonald, Zachary Charles

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

## Spring 2017

### January 25, Brandon Alberts

Title: Ultraproducts - they aren't just for logicians

Abstract: If any of you have attended a logic talk (or one of Ivan's donut seminar talks) you may have learned about ultraproducts as a weird way to mash sets together to get bigger sets in a nice way. Something particularly useful to set theorists, but maybe not so obviously useful to the rest of us. I will give an accessible introduction to ultraproducts and motivate their use in other areas of mathematics.

### February 1, Megan Maguire

Title: Hyperbolic crochet workshop

Abstract: TBA

### February 8, Cullen McDonald

### February 15, Paul Tveite

Title: Fun with Hamel Bases!

Abstract: If we view the real numbers as a vector field over the rationals, then of course they have a basis (assuming the AOC). This is called a Hamel basis and allows us to do some cool things. Among other things, we will define two periodic functions that sum to the identity function.