Applied/Physical Applied Math: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
 
(106 intermediate revisions by 5 users not shown)
Line 1: Line 1:
= Physical Applied Math Group Meeting =
= Physical Applied Math Group Meeting =


*'''When:''' Thursdays at 4:00pm (unless there is a [https://www.math.wisc.edu/deptmeetings Department Meeting])
*'''When:''' Wednesdays at 4:00pm in VV 901
*'''Where:''' [https://us.bbcollab.com/guest/0ad27f42c51d4ffbbdff719013f16acd BBCollaborate Ultra] <s>901 Van Vleck Hall</s>
*'''Where:''' 901 Van Vleck Hall
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]
*'''Organizers:''' [https://people.math.wisc.edu/~chr/ Chris Rycroft], [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].
*'''Announcements:''' Contact the organizers to join this meeting


== Spring 2020 ==
== Fall 2024 ==
    
    
{| cellpadding="8"
{| cellpadding="8"
!align="left" | date
!align="left" | Date
!align="left" | speaker
!align="left" | Speaker
!align="left" | title
!align="left" | Title
|-
|-
|Jan. 30
|Sep 11
|Jean-Luc
|Spagnolie
|Organizational meeting; [https://www.dropbox.com/s/bnjpyud6h8u3lav/homog_periodic_lattice_group_meeting.pdf?dl=0 Homogenization of a periodic lattice]
|Growth and buckling of filaments in viscous fluids, Part I
|-
|-
|Feb. 6
|Sep 18
|Gage
|Ohm
|Krasilov et al., [https://bura.brunel.ac.uk/bitstream/2438/419/1/Growing%20Random%20Sequences.pdf Growing random sequences]<br> Makover and McGowan, [https://arxiv.org/abs/math/0510159 An elementary proof that random Fibonacci sequences grow exponentially]
|Rods in flows: from geometry to fluids
|-
|-
|Feb. 13
|Sep 25
|–
|
|
|''Faculty Meeting''
|-
|-
|Feb. 20
|Oct 2
|Saverio
|Arthur Young (Rycroft Group)
|Greengard and Jiang, [https://epubs.siam.org/doi/abs/10.1137/18M1216158 A New Mixed Potential Representation for Unsteady, Incompressible Flow]
|Multiphase Taylor–Couette flow transitions
|-
|-
|Feb. 27
|Oct 9
|
|Albritton
|''Faculty (EC) Meeting''
|I thought we already knew everything about shear flows?
|-
|-
|Mar. 5
|Oct 16
|Wil
|Chandler
|[https://www.dropbox.com/s/fbidvoslu3twtlv/pam_2020.pdf?dl=0 Implicit surfaces and the closest point problem]
|Investigating active liquid crystals using an immersed deformable body
|-
|-
|Mar. 12
|Oct 23
|''cancelled''
|Ohm
|
|
|-
|-
|Mar. 19
|Oct 30
|Saverio
|Thiffeault
|[https://www.dropbox.com/s/h9rmglss07bmyb6/BonusLecture.pdf?dl=0 Primer on SIR models and the epidemic]
|<s>Maxey-Riley equation for active particles</s> Time-dependent reciprocal theorem
|-
|Mar. 26 ''3:30pm''
|Jean-Luc
|[https://youtu.be/B0GNtFApUQ8 Shape Matters: Homogenization for a confined Brownian microswimmer] (seminar at Princeton)
|-
|-
|Apr. 2
|Nov 6
|–
|
|
|''Faculty Meeting''
|-
|-
|Apr. 9
|Nov 13
|Ruifu
|Ahmad Zaid Abassi
|Texier, [https://arxiv.org/abs/1907.08512 Fluctuations of the product of random matrices and generalised Lyapunov exponent] [https://www.dropbox.com/s/xb0jb833xzpmtdj/Ruifi_group_meeting.pdf?dl=0 notes]
(UC Berkeley)
|Finite-depth standing water waves: theory, computational algorithms, and rational approximations
|-
|-
|Apr. 16
|Nov 20
|Jean-Luc
|Jingyi Li
|[https://www.dropbox.com/s/u66adsybjai7j5k/dumbbell_fluct.pdf Fluctuating dummbell swimmer]
|Arrested development and traveling waves of active suspensions in nematic liquid crystals
|-
|-
|Apr. 23
|Nov 27
|
|''Thanksgiving''
|
|
|-
|-
|Apr. 30
|Dec 4
|
|Thiffeault
|
|
|-
|-
|}
|}
== Abstracts ==
=== '''Ahmad Abassi, University of California, Berkeley''' ===
Title: Finite-depth standing water waves: theory, computational algorithms, and rational approximations
We generalize the semi-analytic standing-wave framework of Schwartz and Whitney (1981) and Amick and Toland (1987) to finite-depth standing gravity waves. We propose an appropriate Stokes-expansion ansatz and iterative algorithm to solve the system of differential equations governing the expansion coefficients. We then present a more efficient algorithm that allows us to compute the asymptotic solution to higher orders. Finally, we conclude with numerical simulations of the algorithms implemented in multiple-precision arithmetic on a supercomputer to study the effects of small divisors and the analytic properties of rational approximations of the computed solutions. This is joint work with Jon Wilkening (UC Berkeley).


== Archived semesters ==
== Archived semesters ==
*[[Applied/Physical Applied Math/Spring2024|Spring 2024]]
*[[Applied/Physical_Applied_Math/Fall2023|Fall 2023]]
*[[Applied/Physical_Applied_Math/Fall2021|Fall 2021]]
*[[Applied/Physical_Applied_Math/Spring2021|Spring 2021]]
*[[Applied/Physical_Applied_Math/Fall2020|Fall 2020]]
*[[Applied/Physical_Applied_Math/Summer2020|Summer 2020]]
*[[Applied/Physical_Applied_Math/Spring2020|Spring 2020]]
*[[Applied/Physical_Applied_Math/Fall2019|Fall 2019]]
*[[Applied/Physical_Applied_Math/Fall2019|Fall 2019]]
*[[Applied/Physical_Applied_Math/Spring2019|Spring 2019]]
*[[Applied/Physical_Applied_Math/Spring2019|Spring 2019]]

Latest revision as of 17:50, 14 November 2024

Physical Applied Math Group Meeting

Fall 2024

Date Speaker Title
Sep 11 Spagnolie Growth and buckling of filaments in viscous fluids, Part I
Sep 18 Ohm Rods in flows: from geometry to fluids
Sep 25
Oct 2 Arthur Young (Rycroft Group) Multiphase Taylor–Couette flow transitions
Oct 9 Albritton I thought we already knew everything about shear flows?
Oct 16 Chandler Investigating active liquid crystals using an immersed deformable body
Oct 23 Ohm
Oct 30 Thiffeault Maxey-Riley equation for active particles Time-dependent reciprocal theorem
Nov 6
Nov 13 Ahmad Zaid Abassi

(UC Berkeley)

Finite-depth standing water waves: theory, computational algorithms, and rational approximations
Nov 20 Jingyi Li Arrested development and traveling waves of active suspensions in nematic liquid crystals
Nov 27 Thanksgiving
Dec 4 Thiffeault

Abstracts

Ahmad Abassi, University of California, Berkeley

Title: Finite-depth standing water waves: theory, computational algorithms, and rational approximations

We generalize the semi-analytic standing-wave framework of Schwartz and Whitney (1981) and Amick and Toland (1987) to finite-depth standing gravity waves. We propose an appropriate Stokes-expansion ansatz and iterative algorithm to solve the system of differential equations governing the expansion coefficients. We then present a more efficient algorithm that allows us to compute the asymptotic solution to higher orders. Finally, we conclude with numerical simulations of the algorithms implemented in multiple-precision arithmetic on a supercomputer to study the effects of small divisors and the analytic properties of rational approximations of the computed solutions. This is joint work with Jon Wilkening (UC Berkeley).

Archived semesters



Return to the Applied Mathematics Group Page