Applied/Physical Applied Math: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
 
(88 intermediate revisions by 5 users not shown)
Line 1: Line 1:
= Physical Applied Math Group Meeting =
= Physical Applied Math Group Meeting =


*'''When:''' Thursdays at 4:00pm (unless there is a [https://www.math.wisc.edu/deptmeetings Department Meeting])
*'''When:''' Wednesdays at 4:00pm in VV 901
*'''Where:''' Zoom (contact SES or J-LT for link) <s>901 Van Vleck Hall</s>
*'''Where:''' 901 Van Vleck Hall
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]
*'''Organizers:''' [https://people.math.wisc.edu/~chr/ Chris Rycroft], [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]
*'''Announcements:''' Contact SES or J-LT to be added as a guest to our Slack channel.
*'''Announcements:''' Contact the organizers to join this meeting


== Summer 2020 ==
== Fall 2024 ==
    
    
{| cellpadding="8"
{| cellpadding="8"
!align="left" | date
!align="left" | Date
!align="left" | speaker
!align="left" | Speaker
!align="left" | title
!align="left" | Title
|-
|-
|May 14
|Sep 11
|''video party''
|Spagnolie
|Ken Millett, [https://www.youtube.com/watch?v=JSVE-ukefPg Entanglement of Polymers]
|Growth and buckling of filaments in viscous fluids, Part I
|-
|-
|May 21
|Sep 18
|Saverio
|Ohm
|Flagellar locomotion
|Rods in flows: from geometry to fluids
|-
|-
|May 28
|Sep 25
|''video party''
|
|Gareth Alexander, [https://www.youtube.com/watch?v=NKNkequdrVs&feature=emb_logo Geometric Topology of Liquid Crystal Textures]
|
|-
|-
|June 4
|Oct 2
|Hongfei
|Arthur Young (Rycroft Group)
|[https://www.dropbox.com/s/nqnbkujpnbxn0mo/Rayleigh_1892_On%20the%20influence%20of%20obstacles%20arranged%20in%20rectangular%20order%20upon%20the.pdf Rayleigh's solution of diffusion in a lattice]
|Multiphase Taylor–Couette flow transitions
|-
|-
|June 11
|Oct 9
|''video party''
|Albritton
|Isabelle Gallagher, [https://youtu.be/BkrKkUVadDo From Newton to Boltzmann, fluctuations and large deviations]
|I thought we already knew everything about shear flows?
|-
|-
|June 18
|Oct 16
|Jean-Luc
|Chandler
|Correlations in the active Brownian particle model
|Investigating active liquid crystals using an immersed deformable body
|-
|-
|June 25
|Oct 23
|''video party''
|Ohm
|Mark Embree, [https://www.youtube.com/watch?v=m-2tZs1398Y Contour integral methods for nonlinear eigenvalue problems]
|
|-
|-
|July 2
|Oct 30
|''no meeting''
|Thiffeault
|''watch WHOI-GFD lectures instead''
|<s>Maxey-Riley equation for active particles</s> Time-dependent reciprocal theorem
|-
|-
|July 9
|Nov 6
|Eduardo Vitral
|
|Mesoscale models for soft layered materials: the role of curvatures in topological defect motion, flows and instabilities
|
|-
|-
|Nov 13
|Ahmad Zaid Abassi
(UC Berkeley)
|Finite-depth standing water waves: theory, computational algorithms, and rational approximations
|-
|Nov 20
|Jingyi Li
|Arrested development and traveling waves of active suspensions in nematic liquid crystals
|-
|Nov 27
|''Thanksgiving''
|
|-
|Dec 4
|Thiffeault
|
|-
|}
== Abstracts ==
=== '''Ahmad Abassi, University of California, Berkeley''' ===
Title: Finite-depth standing water waves: theory, computational algorithms, and rational approximations


|}
We generalize the semi-analytic standing-wave framework of Schwartz and Whitney (1981) and Amick and Toland (1987) to finite-depth standing gravity waves. We propose an appropriate Stokes-expansion ansatz and iterative algorithm to solve the system of differential equations governing the expansion coefficients. We then present a more efficient algorithm that allows us to compute the asymptotic solution to higher orders. Finally, we conclude with numerical simulations of the algorithms implemented in multiple-precision arithmetic on a supercomputer to study the effects of small divisors and the analytic properties of rational approximations of the computed solutions. This is joint work with Jon Wilkening (UC Berkeley).


== Archived semesters ==
== Archived semesters ==
*[[Applied/Physical Applied Math/Spring2024|Spring 2024]]
*[[Applied/Physical_Applied_Math/Fall2023|Fall 2023]]
*[[Applied/Physical_Applied_Math/Fall2021|Fall 2021]]
*[[Applied/Physical_Applied_Math/Spring2021|Spring 2021]]
*[[Applied/Physical_Applied_Math/Fall2020|Fall 2020]]
*[[Applied/Physical_Applied_Math/Summer2020|Summer 2020]]
*[[Applied/Physical_Applied_Math/Spring2020|Spring 2020]]
*[[Applied/Physical_Applied_Math/Spring2020|Spring 2020]]
*[[Applied/Physical_Applied_Math/Fall2019|Fall 2019]]
*[[Applied/Physical_Applied_Math/Fall2019|Fall 2019]]

Latest revision as of 17:50, 14 November 2024

Physical Applied Math Group Meeting

Fall 2024

Date Speaker Title
Sep 11 Spagnolie Growth and buckling of filaments in viscous fluids, Part I
Sep 18 Ohm Rods in flows: from geometry to fluids
Sep 25
Oct 2 Arthur Young (Rycroft Group) Multiphase Taylor–Couette flow transitions
Oct 9 Albritton I thought we already knew everything about shear flows?
Oct 16 Chandler Investigating active liquid crystals using an immersed deformable body
Oct 23 Ohm
Oct 30 Thiffeault Maxey-Riley equation for active particles Time-dependent reciprocal theorem
Nov 6
Nov 13 Ahmad Zaid Abassi

(UC Berkeley)

Finite-depth standing water waves: theory, computational algorithms, and rational approximations
Nov 20 Jingyi Li Arrested development and traveling waves of active suspensions in nematic liquid crystals
Nov 27 Thanksgiving
Dec 4 Thiffeault

Abstracts

Ahmad Abassi, University of California, Berkeley

Title: Finite-depth standing water waves: theory, computational algorithms, and rational approximations

We generalize the semi-analytic standing-wave framework of Schwartz and Whitney (1981) and Amick and Toland (1987) to finite-depth standing gravity waves. We propose an appropriate Stokes-expansion ansatz and iterative algorithm to solve the system of differential equations governing the expansion coefficients. We then present a more efficient algorithm that allows us to compute the asymptotic solution to higher orders. Finally, we conclude with numerical simulations of the algorithms implemented in multiple-precision arithmetic on a supercomputer to study the effects of small divisors and the analytic properties of rational approximations of the computed solutions. This is joint work with Jon Wilkening (UC Berkeley).

Archived semesters



Return to the Applied Mathematics Group Page