Applied/ACMS: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
 
(550 intermediate revisions by 19 users not shown)
Line 5: Line 5:
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)
*'''Where:''' 901 Van Vleck Hall
*'''Where:''' 901 Van Vleck Hall
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]
*'''Organizers:''' [https://math.wisc.edu/staff/fabien-maurice/ Maurice Fabien], [https://people.math.wisc.edu/~rycroft/ Chris Rycroft], and [https://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie],
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.
*'''To join the ACMS mailing list:''' Send mail to [mailto:acms+join@g-groups.wisc.edu acms+subscribe@g-groups.wisc.edu].


<br>
<br>  


== Spring 2018  ==
== '''Spring 2025''' ==
 
{| cellpadding="8"
{| cellpadding="8"
!align="left" | date
! align="left" |Date
!align="left" | speaker
! align="left" |Speaker
!align="left" | title
! align="left" |Title
!align="left" | host(s)
! align="left" |Host(s)
|-
|-
| Feb. 2, '''4pm, VV 911'''
|Jan 31
|[https://scholar.harvard.edu/tfai Thomas Fai] (Harvard)
|TBA
|''[[Applied/ACMS/absS18#Thomas Fai (Harvard) | The Lubricated Immersed Boundary Method]]''
|
| Spagnolie
|
|-
|-
| Feb. 9
|Feb 7
|[https://sites.google.com/site/michaelherty/home Michael Herty] (RWTH-Aachen)
|TBA
|''[[Applied/ACMS/absS18#Michael Herty (RWTH-Aachen) | Opinion Formation Models and Mean field Games Techniques]]''
|
|Jin
|
|-
|-
| Feb. 16
|Feb 14
|TBA
|
|
|
|-
|Feb 21
|TBA
|
|
|
|
|-
|-
| Feb. 23
|Feb 28
|[https://people.ucsc.edu/~fmonard/ François Monard] (UC Santa Cruz)
|TBA
|''[[Applied/ACMS/absS18#François Monard (UC Santa Cruz) | TBA]]''
|
|Li
|
|-
|Mar 7
|TBA
|
|
|-
|-
| ''' Wed, Feb. 28'''
|Mar 14
|[http://www.math.nus.edu.sg/~matyh/ Haizhao Yang] (National University of Singapore)
|[https://lu.seas.harvard.edu/ Yue Lu] (Harvard) '''[Colloquium]'''
|''[[Applied/ACMS/absS18#Haizhao Yang (National University of Singapore) | TBA]]''
|
|Li
|Li
|-
|-
| Mar. 2
|Mar 21
|[http://wwwf.imperial.ac.uk/~ekeaveny/ Eric Keaveny] (Imperial College London)
|TBA
|''[[Applied/ACMS/absS18#Eric Keaveny (Imperial College London) | TBA]]''
|
|Spagnolie, Thiffeault
|
|-
|-
| Mar. 9
|Mar 28
|''Spring Break''
|
|
|
|-
|Apr 4
|TBA
|
|
|
|
|-
|-
| Mar. 16, '''4pm'''
|Apr 11
|[https://math.dartmouth.edu/~annegelb/ Anne Gelb] (Dartmouth)
|[https://meche.mit.edu/people/faculty/pierrel@mit.edu Pierre Lermusiaux] (MIT)
|''[[Applied/ACMS/absS18#Anne Gelb (Dartmouth) | TBA]]''
|
|Li
|Chen
|-
|-
| Mar. 23
|Apr 18
|
|[https://www.math.uci.edu/~jxin/ Jack Xin] (UC Irvine) '''[Colloquium]'''
|
|
|
|
|-
|-
| Mar. 30
|Apr 25
|Spring break
|[https://www-users.cse.umn.edu/~bcockbur/ Bernardo Cockburn] (Minnesota)
|
|''Transforming stabilization into spaces''
|
| Stechmann, Fabien
|-
| '''Wed. Apr. 4'''
|[http://people.math.gatech.edu/~mtao8/ Molei Tao] (Georgia Tech)
|''[[Applied/ACMS/absS18#Molei Tao (Georgia Tech) | Explicit high-order symplectic integration of nonseparable Hamiltonians: algorithms and long time performance]]''
|Jin
|-
| Apr. 6
|[http://jfi.uchicago.edu/~william/ William Irvine] (U Chicago)
|''[[Applied/ACMS/absS18#William Irvine (U Chicago) | TBA]]''
|Spagnolie
|-
| Apr. 13
|[http://www.math.uvic.ca/~khouider/ Boualem Khouider] (UVic)
|''[[Applied/ACMS/absS18#Boualem Khouider (UVic) | TBA]]''
|Smith, Stechmann
|-
| Apr. 20
|
|
|
|-
|-
| Apr. 27
|May 2
|[https://sylviaherbert.com/ Sylvia Herbert] (UCSD)
|
|
|  
|Chen
|
|}
|}


==Abstracts==
====Bernardo Cockburn (Minnesota)====
Title: Transforming stabilization into spaces
In the framework of finite element methods for ordinary differential equations, we consider the continuous Galerkin method (introduced in 72) and the discontinuous Galerkin method (introduced in 73/74). We uncover the fact that both methods discretize the time derivative in exactly the same form, and discuss a few of its consequences. We end by briefly describing our ongoing work on the extension of this result to some Galerkin methods for partial differential equations.<div id="Bal"><div id="Portone"><div id="Damle"><div id="Sprague"><div id="Holmes-Cerfon"><div id="Sun"><div id="Maxian"><div id="Lavi">
== Archived semesters ==
== Archived semesters ==
*[[Applied/ACMS/Fall2024|Fall 2024]]
*[[Applied/ACMS/Spring2024|Spring 2024]]
*[[Applied/ACMS/Fall2023|Fall 2023]]
*[[Applied/ACMS/Spring2023|Spring 2023]]
*[[Applied/ACMS/Fall2022|Fall 2022]]
*[[Applied/ACMS/Spring2022|Spring 2022]]
*[[Applied/ACMS/Fall2021|Fall 2021]]
*[[Applied/ACMS/Spring2021|Spring 2021]]
*[[Applied/ACMS/Fall2020|Fall 2020]]
*[[Applied/ACMS/Spring2020|Spring 2020]]
*[[Applied/ACMS/Fall2019|Fall 2019]]
*[[Applied/ACMS/Spring2019|Spring 2019]]
*[[Applied/ACMS/Fall2018|Fall 2018]]
*[[Applied/ACMS/Spring2018|Spring 2018]]
*[[Applied/ACMS/Fall2017|Fall 2017]]
*[[Applied/ACMS/Fall2017|Fall 2017]]
*[[Applied/ACMS/Spring2017|Spring 2017]]
*[[Applied/ACMS/Spring2017|Spring 2017]]

Latest revision as of 19:31, 4 January 2025


Applied and Computational Mathematics Seminar


Spring 2025

Date Speaker Title Host(s)
Jan 31 TBA
Feb 7 TBA
Feb 14 TBA
Feb 21 TBA
Feb 28 TBA
Mar 7 TBA
Mar 14 Yue Lu (Harvard) [Colloquium] Li
Mar 21 TBA
Mar 28 Spring Break
Apr 4 TBA
Apr 11 Pierre Lermusiaux (MIT) Chen
Apr 18 Jack Xin (UC Irvine) [Colloquium]
Apr 25 Bernardo Cockburn (Minnesota) Transforming stabilization into spaces Stechmann, Fabien
May 2 Sylvia Herbert (UCSD) Chen

Abstracts

Bernardo Cockburn (Minnesota)

Title: Transforming stabilization into spaces

In the framework of finite element methods for ordinary differential equations, we consider the continuous Galerkin method (introduced in 72) and the discontinuous Galerkin method (introduced in 73/74). We uncover the fact that both methods discretize the time derivative in exactly the same form, and discuss a few of its consequences. We end by briefly describing our ongoing work on the extension of this result to some Galerkin methods for partial differential equations.