Applied/ACMS: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
 
(124 intermediate revisions by 11 users not shown)
Line 6: Line 6:
*'''Where:''' 901 Van Vleck Hall
*'''Where:''' 901 Van Vleck Hall
*'''Organizers:'''  [https://math.wisc.edu/staff/fabien-maurice/ Maurice Fabien], [https://people.math.wisc.edu/~rycroft/ Chris Rycroft], and [https://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie],  
*'''Organizers:'''  [https://math.wisc.edu/staff/fabien-maurice/ Maurice Fabien], [https://people.math.wisc.edu/~rycroft/ Chris Rycroft], and [https://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie],  
*'''To join the ACMS mailing list:''' Send mail to [mailto:acms+join@g-groups.wisc.edu acms+join@g-groups.wisc.edu].
*'''To join the ACMS mailing list:''' Send mail to [mailto:acms+join@g-groups.wisc.edu acms+subscribe@g-groups.wisc.edu].


<br>   
<br>   


== Fall 2023  ==
== '''Fall 2024''' ==
 
{| class="wikitable"
{| cellpadding="8"
|+
!align="left" | date
!Date
!align="left" | speaker
!Speaker
!align="left" | title
!Title
!align="left" | host(s)
!Host(s)
|-
|-
| Sep 8
|Sep 13*
|[https://webspace.clarkson.edu/~ebollt/ Erik Bollt] (Clarkson University)
|[https://people.math.wisc.edu/~nchen29/ Nan Chen] (UW)
|A New View on Integrability: On Matching Dynamical Systems through Koopman Operator Eigenfunctions
|Intro. to Uncertainty Quantification (UQ) (tutorial)
| Chen
|Spagnolie
|-
|-
| Sep 15  '''4:00pm B239'''
|Sep 20
|[https://math.yale.edu/people/john-schotland John Schotland] (Yale University)
|[https://knewhall.web.unc.edu Katie Newhall] (UNC Chapel Hill)
| Nonlocal PDEs and Quantum Optics
|Energy landscapes, metastability, and transition paths
| Li
|Rycroft
|-
|-
|Sep 22
|Sep 27
|[https://sites.google.com/view/balazsboros Balazs Boros] (U Vienna)
|[https://ptg.ukzn.ac.za Indresan Govender] (Mintek / Univ. of KwaZulu-Natal, South Africa)
|Oscillatory mass-action systems
|Granular flow modeling and visualization using nuclear imaging
|Craciun
|Rycroft
|-
|-
| Sep 29
|Oct 4*
|[https://data-assimilation-causality-oceanography.atmos.colostate.edu/ Peter Jan van Leeuwen] (Colorado State University)
|[https://sse.tulane.edu/math/people/hongfei-chen Hongfei Chen] (Tulane)
|Nonlinear Causal Discovery, with applications to atmospheric science
|Investigating Hydrodynamics of Choanoflagellate Colonies: A Reduced Model Approach
| Chen
|Jean-Luc
|-
|-
| '''Wed Oct 4'''
|Oct 11 '''Colloquium in B239 at 4:00pm'''
|[https://www.damtp.cam.ac.uk/person/est42/ Edriss Titi] (Cambridge/Texas A&M)
|[https://people.math.ethz.ch/~imikaela/ Mikaela Iacobelli] (ETH/IAS)
|''[[Applied/ACMS/absF23#Edriss Titi (Cambridge/Texas A&M)|Distringuished Lecture Series]]''
|[[# TBA| TBA  ]]
| Smith, Stechmann
|Li
|-
|-
| Oct 6
|Oct 18 '''Colloquium in B239 at 4:00pm'''
| [https://sites.google.com/view/pollyyu Polly Yu] (Harvard)
|[https://galton.uchicago.edu/~guillaumebal/ Guillaume Bal] (U Chicago)
| A Spatiotemporal Model of GPCR-G protein Interactions
|[[#Bal|  Speckle formation of laser light in random media: The Gaussian conjecture  ]]
|Craciun
| Li, Stechmann
|-
|-
| Oct 13
|Oct 23 ('''Wednesday''')
| [https://geosci.uchicago.edu/people/da-yang/ Da Yang] (University of Chicago)
|[https://www.sandia.gov/ccr/staff/teresa-portone/ Teresa Portone] (Sandia)
| The Incredible Lightness of Water Vapor
|[[#Portone |  Beyond parametric uncertainty: quantifying model-form uncertainty in model predictions ]]
|Smith
|Stechmann
|-
|-
| Oct 19 (*Thursday* 2:25pm)
|Oct 25
|[https://sites.google.com/view/jiaxinjin/ Jiaxin Jin] (The Ohio State University)
|[https://www.cs.cornell.edu/~damle/ Anil Damle] (Cornell)
| TBA
|[[#Damle | Fine-grained Theory and Hybrid Algorithms for Randomized Numerical Linear Algebra ]]
|Craciun
|-
| Oct 20
|[https://www.stat.uchicago.edu/~ykhoo/ Yuehaw Khoo] (University of Chicago)
|
|Li
|Li
|-
|-
| Oct 27
| Nov 1
| [https://shukaidu.github.io/ Shukai Du] (UW)
|[https://research-hub.nrel.gov/en/persons/michael-sprague Michael Sprague] (NREL)
| Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer
|[[#Sprague| Exascale supercomputing and predictive wind energy simulations  ]]
| Stechmann
|Spagnolie
|-
| Nov 3
|[https://www.math.arizona.edu/~lmig/ Lise-Marie Imbert-Gérard] (University of Arizona)
|
|Rycroft
|-
| Nov 10
| [https://as.tufts.edu/physics/people/faculty/timothy-atherton Timothy Atherton] (Tufts)
|
|Chandler, Spagnolie
|-
|-
| Nov 17
| Nov 8
|[https://klotsagroup.wixsite.com/home Daphne Klotsa]
|[https://personal.math.ubc.ca/~holmescerfon/ Miranda Holmes-Cerfon] (UBC)
|
|[[#Holmes-Cerfon | The dynamics of particles with ligand-receptor contacts ]]
|Rycroft
|Stechmann
|-
|-
| Nov 24
| Nov 15*
| Thanksgiving break
| [http://sun-yue.com Yue Sun] (UW–Madison)
|
|[[#Holmes-Cerfon | Simulating fluid–structure interaction: A tale of two methods ]]
|
| Rycroft
|-
|-
| Dec 1
| Nov 22
|[https://scholar.google.ca/citations?user=CRlA-sEAAAAJ&hl=en&oi=sra Adam Stinchcombe] (University of Toronto)
|[https://ibd.uchicago.edu/joinus/yenfellowship/ Ondrej Maxian] (U Chicago)
|
|[[#Maxian | From slender body numerics to patterning the cell cortex: two stories of actin filament dynamics ]]
|Cochran
|Ohm & Spagnolie
|-
|-
| Dec 8
| Nov 29*
|
|''Thanksgiving''
|
|
|
|
|-
|-
|Pending
| Dec 6
|Invite sent to Talea Mayo
|[https://www.simonsfoundation.org/people/ido-lavi/ Ido Lavi] (Flatiron)
|
|[[# TBA|  TBA  ]]
|Fabien
|Spagnolie
|}
|}
Dates marked with an asterisk correspond to [https://uwbadgers.com/sports/football/schedule home football games of the UW–Madison Badgers]. On these dates it can be difficult to get a hotel room close to campus at short notice.


== Abstracts ==
== Abstracts ==
'''[https://webspace.clarkson.edu/~ebollt/ Erik Bollt] (Clarkson University)'''


''A New View on Integrability: On Matching Dynamical Systems through Koopman Operator Eigenfunctions''
===Nan Chen (UW–Madison)===
 
Title: Taming Uncertainty in a Complex World: The Rise of Uncertainty Quantification -- A Tutorial for Beginners
 
I will provide a tutorial about uncertainty quantification (UQ) for those who have no background but are interested in learning more about this area. The talk will exploit many elementary examples, which are understandable to graduate students and senior undergraduates, to present the ideas of UQ. Topics include characterizing uncertainties using information theory, UQ in linear and nonlinear dynamical systems, UQ via data assimilation, the role of uncertainty in diagnostics, and UQ in advancing efficient modeling. The surprisingly simple examples in each topic explain why and how UQ is essential. Both Matlab and Python codes have been made available for these simple examples.
 
===Katie Newhall (UNC Chapel Hill)===
 
Title: Energy landscapes, metastability, and transition paths
 
The concept of an energy landscape emerged in the 1930’s as a way to calculate chemical reaction rate constants via Henry Eyring’s transition state theory. Its use has expanded since then, remaining central to quantifying metastability (infrequent jumps between deterministically-stable, energy minimizing, states) that arises in noisy systems when the thermal energy is small relative to the energy barrier separating two states. In this talk, I will present extensions of this theory that I have developed and applied to physical and biological systems. The first is an infinite dimensional system for which I prove metastability is present in the absence of an energy barrier; I extend transition state theory to compute mean transition times. In the second, I derive a model for a spatially-extended magnetic system with spatially-correlated noise designed to sample the Gibbs distribution relative to a defined energy functional. In the third, I show a quasi-potential can be found and used to describe metastable transitions between stable clusters in a bead-spring polymer model of chromosome dynamics with additional stochastic binding pushing the system out of equilibrium.
 
===Indresan Govender (Mintek / Univ. of KwaZulu Natal, South Africa)===


Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of non- linear dynamic behavior (e.g. through normal forms). In this presentation we will argue that the use of the Koopman operator and its spectrum are particularly well suited for this endeavor, both in theory, but also especially in view of recent data-driven machine learning algorithmic developments. Recall that the Koopman operator describes the dynamics of observation functions along a flow or map, and it is formally the adjoint of the Frobenius-Perrron operator that describes evolution of densities of ensembles of initial conditions. The Koopman operator has a long theoretical tradition but it has recently become extremely popular through numerical methods such as dynamic mode decomposition (DMD) and variants, for applied problems such as coherence and also in control theory. We demonstrate through illustrative examples that we can nontrivially extend the applicability of the Koopman spectral theoretical and computational machinery beyond modeling and prediction, towards a systematic discovery of rectifying integrability coordinate transformations.
Title: Granular flow modeling and visualization using nuclear imaging


Despite its ubiquity, a complete theory to describe the underlying rheology of granular flows remains elusive. Central to this problem is the lack of detailed, in-situ measurements of the granular flow field. To this end, we present two non-invasive imaging techniques currently employed to measure the flow of individual grains within granular flow systems that span simple mono-sized flows of plastic beads to complex industrial mixture flows of rocks and slurry. The first technique employs diagnostic X-rays operated in biplanar mode to triangulate the motion of low-density granules in simplified flow systems to within a 3D spatial accuracy of 0.15 mm at tracking frequencies up to 100 Hz. The second—arguably the workhorse of our research operation—is the nuclear imaging technique of Positron Emission Particle Tracking (PEPT) which triangulates the back-to-back gamma rays emanating from radiolabeled particles to within a millimeter in 3D space at a millisecond timing resolution. PEPT can track the motion of any particle with a diameter greater than ∼20 microns. Both techniques are well suited to studying the flow of granular materials after the data is cast into volume and time averages consistent with the continuum framework. In this talk I will explore the many interesting analysis techniques employed to mapping out the complex flow regimes found in typical granular systems, and the insights they offer towards better understanding their rheological character. Examples explored will include rotating drum flows (wet and dry), shear cells and their industrial counterpart the IsaMill<sup>TM</sup>, hydrocyclone separator flows, and the motivation for tracking of multiple particles. The validation offered to numerical schemes like the Discrete Element Method will also be explored wherein we highlight the complimentary role that measurement and simulation play in unravelling the secrets of granular flows. Finally, and deviating somewhat from the imaging world, I will present our efforts towards utilizing granular flow modeling in real-time control of complex industrial flows encountered in mineral processing.


'''[https://math.yale.edu/people/john-schotland John Schotland] (Yale University)'''
===Hongfei Chen (Tulane)===


''Nonlocal PDEs and Quantum Optics''
Title: Investigating Hydrodynamics of Choanoflagellate Colonies: A Reduced Model Approach


Quantum optics is the quantum theory of the interaction of light and matter. In this talk, I will describe a real-space formulation of quantum electrodynamics with applications to many body problems. The goal is to understand the transport of nonclassical states of light in random media. In this setting, there is a close relation to kinetic equations for nonlocal PDEs with random coefficients.
Abstract: Choanoflagellates, eukaryotes with a distinctive cellular structure consisting of a cell body, a flagellum, and a collar of microvilli, exhibit fascinating biological behavior. While many species exist as single cells, some form colonies, with the species ''C. Flexa'' standing out for its ability to dynamically transition its flagella between positions inside and outside the colony.


Modeling the hydrodynamics of these colonies ideally requires detailed representations of each cell’s flagellum, microvilli, and body. However, the computational cost of simulating colonies with hundreds of cells makes this approach very expensive. To address this, we propose a reduced modeling framework that simplifies each cell to a force dipole while retaining key hydrodynamic features.


'''[https://sites.google.com/view/balazsboros Balazs Boros] (U Vienna)'''
Our force dipole model is calibrated against detailed computational simulations that account for the complete cellular structure. We show that this reduced model closely matches experimental data for non-deforming, free-swimming colonies. We further investigate how colony swimming and feeding performance depend on the flagellar position relative the colony, cell density, and overall colony shape. Finally, we explore the impact of the wall for flagella-in colonies, which are frequently observed in laboratory settings.


''Oscillatory mass-action systems''
<div id="Bal">
===Guillaume Bal (Chicago)===
Title: Speckle formation of laser light in random media: The Gaussian conjecture


Mass-action differential equations are probably the most common mathematical models in biochemistry, cell biology, and population dynamics. Since oscillatory behavior is ubiquitous in nature, there are several papers (starting with Alfred Lotka) that deal with showing the existence of periodic solutions in mass-action systems. The standard way of proving the existence of a limit cycle in a high-dimensional system is via Andronov-Hopf bifurcation. In this talk, we recall some specific oscillatory models (like glycolysis or phosphorylation), as well as more recent results that aim to systematically classify small mass-action reaction networks that admit an Andronov-Hopf bifurcation.
A widely accepted conjecture in the physical literature states that classical wave-fields propagating in random media over large distances eventually follow a complex circular Gaussian distribution. In this limit, the wave intensity becomes exponentially distributed, which corroborates the speckle patterns of, e.g., laser light observed in experiments. This talk reports on recent results settling the conjecture in the weak-coupling, paraxial regime of wave propagation. The limiting macroscopic Gaussian wave-field is fully characterized by a correlation function that satisfies an unusual diffusion equation.


The paraxial model of wave propagation is an approximation of the Helmholtz model where backscattering has been neglected. It is mathematically simpler to analyze but quite accurate practically for wave-fields that maintain a beam-like structure as in the application of laser light propagating in turbulent atmospheres.


'''[https://data-assimilation-causality-oceanography.atmos.colostate.edu/ Peter Jan van Leeuwen] (Colorado State University)'''
The derivation of the limiting model is first obtained in the Itô-Schrödinger regime, where the random medium is replaced by its white noise limit. The resulting stochastic PDE has the main advantage that finite dimensional statistical moments of the wave-field satisfy closed form equations. The proof of the derivation of the macroscopic model is based on showing that these moment solutions are asymptotically those of the Gaussian limit, on obtaining a stochastic continuity (and tightness) result, and on establishing that moments in the paraxial and the Itô-Schrödinger regimes are asymptotically close.


''Nonlinear Causal Discovery, with applications to atmospheric science''
This is joint work with Anjali Nair.


Understanding cause and effect relations in complex systems is one of the main goals of scientific research. Ideally, one sets up controlled experiments in which different potential drivers are varied to infer their influence on a target variable. However, this procedure is impossible in many systems, for example the atmosphere, where nature is doing one experiment for us. An alternative is to build a detailed computer model of the system, and perform controlled experiments in model world. An issue there is that one can only control external drivers, because controlling an internal variable would kill all feedbacks to that variable, resulting in a study of ‘a different planet’. Because many natural systems cannot be controlled, or only partially, we focus on causal discovery in systems that are non-intervenable. I will describe a non-linear causal discovery framework that is based on (conditional) mutual information. It will be shown that conventional analysis of causal relations via so-called Directed Acyclic Graphs (DAGs, se e.g. Pearl and others) is not suitable for nonlinear systems, and an extension is provided that allows for interacting drivers. I prove that the interacting contributions and interaction informations, and provide a solid interpretation of those, in terms of buffering, hampering, and positive feedbacks. Also ways to infer completeness of the causal networks will be discussed, as well as causal relations that are invisible to our framework. The framework will be applied to simple idealized cloud models, and to real very detailed ground-based remote-sensing observations of cloud properties, where we contrast the causal structure of precipitating and non-precipitation strato-cumulus clouds.
<div id="Portone">
===Teresa Portone (Sandia)===
Title: Beyond parametric uncertainty: quantifying model-form uncertainty in model predictions


Uncertainty quantification (UQ) is the science of characterizing, quantifying, and reducing
uncertainties in mathematical models. It is critical for informing decisions, because it provides a measure
of confidence in model predictions, given the uncertainties present in the model. While approaches to
characterize uncertainties in model parameters, boundary and initial conditions are well established, it is
less clear how to address uncertainties arising when the equations of a mathematical model are
themselves uncertain—that is, when there is model-form uncertainty. Model-form uncertainty often
arises in models of complex physical phenomena where (1) simplifications for computational tractability
or (2) lack of knowledge lead to unknowns in the governing equations for which appropriate
mathematical forms are unknown or may not exist. In this talk, I briefly introduce major concepts in UQ,
then I discuss approaches to characterize model-form uncertainty and its impact on model predictions.


[https://sites.google.com/view/pollyyu Polly Yu] (Harvard/UIUC)
<div id="Damle">
=== Anil Damle (Cornell) ===
Title: Fine-grained Theory and Hybrid Algorithms for Randomized Numerical Linear Algebra


''A Spatiotemporal Model of GPCR-G protein Interactions''
Randomized algorithms have gained increased prominence within numerical linear algebra and they play a key role in an ever-expanding range of problems driven by a breadth of scientific applications. In this talk we will explore two aspects of randomized algorithms by (1) providing experiments and accompanying theoretical analysis that demonstrate how their performance depends on matrix structures beyond singular values (such as coherence of singular subspaces), and (2) showing how to leverage those insights to build hybrid algorithms that blend favorable aspects of deterministic and randomized methods. A focus of this talk will be on methods that approximate matrices using subsets of columns. Relevant motivating applications will be discussed and numerical experiments will illuminate directions for further research.


G-protein coupled receptors (GPCRs) is a class of transmembrane receptors important to many signalling pathways and a common drug target. As its name suggests, the receptor, once activated, binds to a G-protein. Recent experiments suggests that GPCRs form dense tiny clusters. What are the effects of these "hotspots" on signalling kinetics? I will introduce a semi-empirical spatiotemporal model for GPCR-G protein interactions, and present some numerical evidence for how these clusters might locally increase signalling speed.
<div id="Sprague">
=== Michael Sprague (NREL) ===
Title: Exascale supercomputing and predictive wind energy simulations


The predictive simulation modern wind turbines and wind farms is a high-performance-computing (HPC) grand challenge.   Wind turbines are the largest rotating machines in the world, with rotor diameters exceeding 200 meters, and with heights reaching well into the atmospheric boundary layer.  To address this grand challenge, the U.S. Department of Energy (DOE) Wind Energy Technologies Office and the DOE Exascale Computing Project have been supporting the creation of the ExaWind modeling and simulation environment since 2016.   ExaWind is composed of the incompressible-flow computational-fluid-dynamics (CFD) solvers AMR-Wind and Nalu-Wind and the wind-turbine-dynamics solver OpenFAST.  ExaWind codes have been developed with performance portability as a priority, with the first U.S. exascale computer, Frontier, being our target platform. Frontier relies on graphical processing units (GPUs) for acceleration, which presents a major challenge to codes designed for CPUs. In this talk I will give a historical overview of the Exascale Computing Project, an eight-year $1.7 billion project.  I will show results from our ExaWind challenge problem on Frontier and describe the strong-scaling challenges, and I will describe the challenges of modeling and simulating floating offshore wind turbines.  I will also give my perspectives on life as a Research Scientist in Applied Mathematics at a DOE national laboratory.


'''[https://geosci.uchicago.edu/people/da-yang/ Da Yang] (University of Chicago)'''
<div id="Holmes-Cerfon">
=== Miranda Holmes-Cerfon (UBC) ===
Title: The dynamics of particles with ligand-receptor contacts


''The Incredible Lightness of Water Vapor''
One way to glue objects together at the nanoscale or microscale is by ligand-receptor interactions, where short sticky hair-like ligands stick to receptors on another surface, much like velcro on the nanoscale. Such interactions are common in biological systems, such as white blood cells, virus particles, cargo in the nuclear pore complex, etc, and they are also useful in materials science, where coating colloids with single-stranded DNA creates particles with programmable interactions. In these systems, the ligand-receptor interactions not only hold particles together, but also influence their dynamics. How do such particles move? Do they “roll” on each others’ surfaces, as is commonly thought? Or could they slide? And does it matter? In this talk I will introduce our modelling and experimental efforts aimed at understanding the coarse-grained dynamics of particles with ligand-receptor interactions. Our models predict these interactions can change the particles' effective diffusion by orders of magnitude. Our experiments, using DNA-coated colloids, verify this dramatic dynamical slowdown, but also show other dynamical features not yet captured by our models, which suggest new avenues for exploration.


Conventional wisdom suggests that warm air rises while cold air sinks. However, recent satellite observations show that, on average, rising air is colder than sinking air in the tropical free troposphere. This is due to the buoyancy effect of water vapor: the molar mass of water vapor is less than that of dry air, making humid air lighter than dry air at the same temperature and pressure. Unfortunately, this vapor buoyancy effect has been considered negligibly small and thereby overlooked in large-scale climate dynamics. Here we use theory, reanalysis data, and a hierarchy of climate models to show that vapor buoyancy has a similar magnitude to thermal buoyancy in the tropical free troposphere. As a result, cold air rises in the tropical free troposphere. We further show that vapor buoyancy enhances thermal radiation, increases subtropical stratiform low clouds, favors convective aggregation, and stabilizes Earth’s climate. However, some state-of-the-art climate models fail to represent vapor buoyancy properly. This flaw leads to inaccurate simulations of cloud distributions—the largest uncertainty in predicting climate change. Implications of our results on paleoclimate and planetary habitability will also be discussed.
<div id="Sun">
=== Yue Sun (UW–Madison) ===
Title: Simulating fluid–structure interaction: A tale of two methods


Computational approaches have become essential for complementing experimental and theoretical methods in the study of fluid–structure interaction (FSI)—from matching specific experimental conditions to creating digital twins for exploring otherwise unattainable data, to developing adaptable domain-specific methods. In this talk, I will discuss our collaborative work on developing two FSI methods for experimental digital twin applications and general method development.


'''[https://shukaidu.github.io/ Shukai Du] (UW)'''
The first part will highlight our collaboration with the Prigozhin Group at Harvard to create a 3D digital twin of the cryo-plunging process. Using ''cryoflo'', a massively parallelized code with adaptive mesh refinement (AMR) built on AMReX, we model fluid–structure interactions and heat transfer between biological samples and cryogen. This simulation captures critical cooling dynamics, providing insights that inform experimental protocols for cryo-electron microscopy (cryo-EM).


''Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer''
The second part will focus on general method development. Over the past decade, Rycroft ''et al.'' introduced the reference map technique (RMT), a fully Eulerian method for modeling finite-strain deformation in FSI. Here, we integrate the RMT with the lattice Boltzmann (LB) method, introducing a new approach (LBRMT) to simulate finite-strain solids on the LB’s fixed Eulerian grid. We demonstrate LBRMT’s capabilities by modeling interactions among multiple solid structures in fluids, showcasing its adaptability for various FSI scenarios such as collective behavior in active and soft matter.


In the past decade, (artificial) neural networks and machine learning tools have surfaced as game changing technologies across numerous fields, resolving an array of challenging problems. Even for the numerical solution of partial differential equations (PDEs) or other scientific computing problems, results have shown that machine learning can speed up some computations. However, many machine learning approaches tend to lose some of the advantageous features of traditional numerical PDE methods, such as interpretability and applicability to general domains with complex geometry.
<div id="Maxian">
=== Ondrej Maxian (U Chicago) ===


In this talk, we introduce a systematic approach (which we call element learning) with the goal of accelerating finite element-type methods via machine learning, while also retaining the desirable features of finite element methods. The derivation of this new approach is closely related to hybridizable discontinuous Galerkin (HDG) methods in the sense that the local solvers of HDG are replaced by machine learning approaches. Numerical tests are presented for an example PDE, the radiative transfer equation, in a variety of scenarios with idealized or realistic cloud fields, with smooth or sharp gradient in the cloud boundary transition. Comparisons are set up with either a fixed number of degrees of freedom or a fixed accuracy level of $10^{-3}$ in the relative $L^2$ error, and we observe a significant speed-up with element learning compared to a classical finite element-type method. Reference: [https://arxiv.org/abs/2308.02467 arxiv: 2308.02467]
Title: From slender body numerics to patterning the cell cortex: two stories of actin filament dynamics
 
Actin filaments are the main ingredient in the cell cytoskeleton, which controls cell division, motility, and structure. In this talk, I will present two projects whose shared goal is to determine how microscopic dynamics of actin shape larger-scale behaviors of the cell cortex. In the first part, I will detail a new general purpose simulation package for fiber dynamics which accounts for filament inextensibility, Brownian motion, and nonlocal hydrodynamics. I will focus in particular on how to formulate a mobility matrix (force-velocity relationship) which is positive definite (necessary for Brownian motion) and has cost independent of the fiber slenderness (necessary for efficient simulation), then demonstrate how the package can be used to simulate cross-linked actin networks and sedimenting fiber arrays. In the second part, I will present a model for how actin filaments shape their own homeostasis through biochemical coupling with the protein RhoA. I will introduce an activator-inhibitor model for RhoA/actin coupling, then use a Bayesian inverse framework to infer the distribution of actin dynamics parameters associated with experimental data in ''C. elegans'' and starfish embryos. The inferred parameter values demonstrate how varying actin kinetics can explain changing patterns of RhoA excitability observed across multiple experimental systems.


== Future semesters ==
== Future semesters ==


*[[Applied/ACMS/Spring2024|Spring 2024]]
*[[Applied/ACMS/Fall2024|Fall 2024]]


 
*[[Applied/ACMS/Spring2025|Spring 2025]]
----


== Archived semesters ==
== Archived semesters ==


*[[Applied/ACMS/Spring2024|Spring 2024]]
*[[Applied/ACMS/Fall2023|Fall 2023]]
*[[Applied/ACMS/Spring2023|Spring 2023]]
*[[Applied/ACMS/Spring2023|Spring 2023]]
*[[Applied/ACMS/Fall2022|Fall 2022]]
*[[Applied/ACMS/Fall2022|Fall 2022]]

Latest revision as of 23:33, 15 November 2024


Applied and Computational Mathematics Seminar


Fall 2024

Date Speaker Title Host(s)
Sep 13* Nan Chen (UW) Intro. to Uncertainty Quantification (UQ) (tutorial) Spagnolie
Sep 20 Katie Newhall (UNC Chapel Hill) Energy landscapes, metastability, and transition paths Rycroft
Sep 27 Indresan Govender (Mintek / Univ. of KwaZulu-Natal, South Africa) Granular flow modeling and visualization using nuclear imaging Rycroft
Oct 4* Hongfei Chen (Tulane) Investigating Hydrodynamics of Choanoflagellate Colonies: A Reduced Model Approach Jean-Luc
Oct 11 Colloquium in B239 at 4:00pm Mikaela Iacobelli (ETH/IAS) TBA Li
Oct 18 Colloquium in B239 at 4:00pm Guillaume Bal (U Chicago) Speckle formation of laser light in random media: The Gaussian conjecture Li, Stechmann
Oct 23 (Wednesday) Teresa Portone (Sandia) Beyond parametric uncertainty: quantifying model-form uncertainty in model predictions Stechmann
Oct 25 Anil Damle (Cornell) Fine-grained Theory and Hybrid Algorithms for Randomized Numerical Linear Algebra Li
Nov 1 Michael Sprague (NREL) Exascale supercomputing and predictive wind energy simulations Spagnolie
Nov 8 Miranda Holmes-Cerfon (UBC) The dynamics of particles with ligand-receptor contacts Stechmann
Nov 15* Yue Sun (UW–Madison) Simulating fluid–structure interaction: A tale of two methods Rycroft
Nov 22 Ondrej Maxian (U Chicago) From slender body numerics to patterning the cell cortex: two stories of actin filament dynamics Ohm & Spagnolie
Nov 29* Thanksgiving
Dec 6 Ido Lavi (Flatiron) TBA Spagnolie

Dates marked with an asterisk correspond to home football games of the UW–Madison Badgers. On these dates it can be difficult to get a hotel room close to campus at short notice.

Abstracts

Nan Chen (UW–Madison)

Title: Taming Uncertainty in a Complex World: The Rise of Uncertainty Quantification -- A Tutorial for Beginners

I will provide a tutorial about uncertainty quantification (UQ) for those who have no background but are interested in learning more about this area. The talk will exploit many elementary examples, which are understandable to graduate students and senior undergraduates, to present the ideas of UQ. Topics include characterizing uncertainties using information theory, UQ in linear and nonlinear dynamical systems, UQ via data assimilation, the role of uncertainty in diagnostics, and UQ in advancing efficient modeling. The surprisingly simple examples in each topic explain why and how UQ is essential. Both Matlab and Python codes have been made available for these simple examples.

Katie Newhall (UNC Chapel Hill)

Title: Energy landscapes, metastability, and transition paths

The concept of an energy landscape emerged in the 1930’s as a way to calculate chemical reaction rate constants via Henry Eyring’s transition state theory. Its use has expanded since then, remaining central to quantifying metastability (infrequent jumps between deterministically-stable, energy minimizing, states) that arises in noisy systems when the thermal energy is small relative to the energy barrier separating two states. In this talk, I will present extensions of this theory that I have developed and applied to physical and biological systems. The first is an infinite dimensional system for which I prove metastability is present in the absence of an energy barrier; I extend transition state theory to compute mean transition times. In the second, I derive a model for a spatially-extended magnetic system with spatially-correlated noise designed to sample the Gibbs distribution relative to a defined energy functional. In the third, I show a quasi-potential can be found and used to describe metastable transitions between stable clusters in a bead-spring polymer model of chromosome dynamics with additional stochastic binding pushing the system out of equilibrium.

Indresan Govender (Mintek / Univ. of KwaZulu Natal, South Africa)

Title: Granular flow modeling and visualization using nuclear imaging

Despite its ubiquity, a complete theory to describe the underlying rheology of granular flows remains elusive. Central to this problem is the lack of detailed, in-situ measurements of the granular flow field. To this end, we present two non-invasive imaging techniques currently employed to measure the flow of individual grains within granular flow systems that span simple mono-sized flows of plastic beads to complex industrial mixture flows of rocks and slurry. The first technique employs diagnostic X-rays operated in biplanar mode to triangulate the motion of low-density granules in simplified flow systems to within a 3D spatial accuracy of 0.15 mm at tracking frequencies up to 100 Hz. The second—arguably the workhorse of our research operation—is the nuclear imaging technique of Positron Emission Particle Tracking (PEPT) which triangulates the back-to-back gamma rays emanating from radiolabeled particles to within a millimeter in 3D space at a millisecond timing resolution. PEPT can track the motion of any particle with a diameter greater than ∼20 microns. Both techniques are well suited to studying the flow of granular materials after the data is cast into volume and time averages consistent with the continuum framework. In this talk I will explore the many interesting analysis techniques employed to mapping out the complex flow regimes found in typical granular systems, and the insights they offer towards better understanding their rheological character. Examples explored will include rotating drum flows (wet and dry), shear cells and their industrial counterpart the IsaMillTM, hydrocyclone separator flows, and the motivation for tracking of multiple particles. The validation offered to numerical schemes like the Discrete Element Method will also be explored wherein we highlight the complimentary role that measurement and simulation play in unravelling the secrets of granular flows. Finally, and deviating somewhat from the imaging world, I will present our efforts towards utilizing granular flow modeling in real-time control of complex industrial flows encountered in mineral processing.

Hongfei Chen (Tulane)

Title: Investigating Hydrodynamics of Choanoflagellate Colonies: A Reduced Model Approach

Abstract: Choanoflagellates, eukaryotes with a distinctive cellular structure consisting of a cell body, a flagellum, and a collar of microvilli, exhibit fascinating biological behavior. While many species exist as single cells, some form colonies, with the species C. Flexa standing out for its ability to dynamically transition its flagella between positions inside and outside the colony.

Modeling the hydrodynamics of these colonies ideally requires detailed representations of each cell’s flagellum, microvilli, and body. However, the computational cost of simulating colonies with hundreds of cells makes this approach very expensive. To address this, we propose a reduced modeling framework that simplifies each cell to a force dipole while retaining key hydrodynamic features.

Our force dipole model is calibrated against detailed computational simulations that account for the complete cellular structure. We show that this reduced model closely matches experimental data for non-deforming, free-swimming colonies. We further investigate how colony swimming and feeding performance depend on the flagellar position relative the colony, cell density, and overall colony shape. Finally, we explore the impact of the wall for flagella-in colonies, which are frequently observed in laboratory settings.

Guillaume Bal (Chicago)

Title: Speckle formation of laser light in random media: The Gaussian conjecture

A widely accepted conjecture in the physical literature states that classical wave-fields propagating in random media over large distances eventually follow a complex circular Gaussian distribution. In this limit, the wave intensity becomes exponentially distributed, which corroborates the speckle patterns of, e.g., laser light observed in experiments. This talk reports on recent results settling the conjecture in the weak-coupling, paraxial regime of wave propagation. The limiting macroscopic Gaussian wave-field is fully characterized by a correlation function that satisfies an unusual diffusion equation.

The paraxial model of wave propagation is an approximation of the Helmholtz model where backscattering has been neglected. It is mathematically simpler to analyze but quite accurate practically for wave-fields that maintain a beam-like structure as in the application of laser light propagating in turbulent atmospheres.

The derivation of the limiting model is first obtained in the Itô-Schrödinger regime, where the random medium is replaced by its white noise limit. The resulting stochastic PDE has the main advantage that finite dimensional statistical moments of the wave-field satisfy closed form equations. The proof of the derivation of the macroscopic model is based on showing that these moment solutions are asymptotically those of the Gaussian limit, on obtaining a stochastic continuity (and tightness) result, and on establishing that moments in the paraxial and the Itô-Schrödinger regimes are asymptotically close.

This is joint work with Anjali Nair.

Teresa Portone (Sandia)

Title: Beyond parametric uncertainty: quantifying model-form uncertainty in model predictions

Uncertainty quantification (UQ) is the science of characterizing, quantifying, and reducing uncertainties in mathematical models. It is critical for informing decisions, because it provides a measure of confidence in model predictions, given the uncertainties present in the model. While approaches to characterize uncertainties in model parameters, boundary and initial conditions are well established, it is less clear how to address uncertainties arising when the equations of a mathematical model are themselves uncertain—that is, when there is model-form uncertainty. Model-form uncertainty often arises in models of complex physical phenomena where (1) simplifications for computational tractability or (2) lack of knowledge lead to unknowns in the governing equations for which appropriate mathematical forms are unknown or may not exist. In this talk, I briefly introduce major concepts in UQ, then I discuss approaches to characterize model-form uncertainty and its impact on model predictions.

Anil Damle (Cornell)

Title: Fine-grained Theory and Hybrid Algorithms for Randomized Numerical Linear Algebra

Randomized algorithms have gained increased prominence within numerical linear algebra and they play a key role in an ever-expanding range of problems driven by a breadth of scientific applications. In this talk we will explore two aspects of randomized algorithms by (1) providing experiments and accompanying theoretical analysis that demonstrate how their performance depends on matrix structures beyond singular values (such as coherence of singular subspaces), and (2) showing how to leverage those insights to build hybrid algorithms that blend favorable aspects of deterministic and randomized methods. A focus of this talk will be on methods that approximate matrices using subsets of columns. Relevant motivating applications will be discussed and numerical experiments will illuminate directions for further research.

Michael Sprague (NREL)

Title: Exascale supercomputing and predictive wind energy simulations

The predictive simulation modern wind turbines and wind farms is a high-performance-computing (HPC) grand challenge.   Wind turbines are the largest rotating machines in the world, with rotor diameters exceeding 200 meters, and with heights reaching well into the atmospheric boundary layer.  To address this grand challenge, the U.S. Department of Energy (DOE) Wind Energy Technologies Office and the DOE Exascale Computing Project have been supporting the creation of the ExaWind modeling and simulation environment since 2016.   ExaWind is composed of the incompressible-flow computational-fluid-dynamics (CFD) solvers AMR-Wind and Nalu-Wind and the wind-turbine-dynamics solver OpenFAST.  ExaWind codes have been developed with performance portability as a priority, with the first U.S. exascale computer, Frontier, being our target platform. Frontier relies on graphical processing units (GPUs) for acceleration, which presents a major challenge to codes designed for CPUs. In this talk I will give a historical overview of the Exascale Computing Project, an eight-year $1.7 billion project.  I will show results from our ExaWind challenge problem on Frontier and describe the strong-scaling challenges, and I will describe the challenges of modeling and simulating floating offshore wind turbines.  I will also give my perspectives on life as a Research Scientist in Applied Mathematics at a DOE national laboratory.

Miranda Holmes-Cerfon (UBC)

Title: The dynamics of particles with ligand-receptor contacts

One way to glue objects together at the nanoscale or microscale is by ligand-receptor interactions, where short sticky hair-like ligands stick to receptors on another surface, much like velcro on the nanoscale. Such interactions are common in biological systems, such as white blood cells, virus particles, cargo in the nuclear pore complex, etc, and they are also useful in materials science, where coating colloids with single-stranded DNA creates particles with programmable interactions. In these systems, the ligand-receptor interactions not only hold particles together, but also influence their dynamics. How do such particles move? Do they “roll” on each others’ surfaces, as is commonly thought? Or could they slide? And does it matter? In this talk I will introduce our modelling and experimental efforts aimed at understanding the coarse-grained dynamics of particles with ligand-receptor interactions. Our models predict these interactions can change the particles' effective diffusion by orders of magnitude. Our experiments, using DNA-coated colloids, verify this dramatic dynamical slowdown, but also show other dynamical features not yet captured by our models, which suggest new avenues for exploration.

Yue Sun (UW–Madison)

Title: Simulating fluid–structure interaction: A tale of two methods

Computational approaches have become essential for complementing experimental and theoretical methods in the study of fluid–structure interaction (FSI)—from matching specific experimental conditions to creating digital twins for exploring otherwise unattainable data, to developing adaptable domain-specific methods. In this talk, I will discuss our collaborative work on developing two FSI methods for experimental digital twin applications and general method development.

The first part will highlight our collaboration with the Prigozhin Group at Harvard to create a 3D digital twin of the cryo-plunging process. Using cryoflo, a massively parallelized code with adaptive mesh refinement (AMR) built on AMReX, we model fluid–structure interactions and heat transfer between biological samples and cryogen. This simulation captures critical cooling dynamics, providing insights that inform experimental protocols for cryo-electron microscopy (cryo-EM).

The second part will focus on general method development. Over the past decade, Rycroft et al. introduced the reference map technique (RMT), a fully Eulerian method for modeling finite-strain deformation in FSI. Here, we integrate the RMT with the lattice Boltzmann (LB) method, introducing a new approach (LBRMT) to simulate finite-strain solids on the LB’s fixed Eulerian grid. We demonstrate LBRMT’s capabilities by modeling interactions among multiple solid structures in fluids, showcasing its adaptability for various FSI scenarios such as collective behavior in active and soft matter.

Ondrej Maxian (U Chicago)

Title: From slender body numerics to patterning the cell cortex: two stories of actin filament dynamics

Actin filaments are the main ingredient in the cell cytoskeleton, which controls cell division, motility, and structure. In this talk, I will present two projects whose shared goal is to determine how microscopic dynamics of actin shape larger-scale behaviors of the cell cortex. In the first part, I will detail a new general purpose simulation package for fiber dynamics which accounts for filament inextensibility, Brownian motion, and nonlocal hydrodynamics. I will focus in particular on how to formulate a mobility matrix (force-velocity relationship) which is positive definite (necessary for Brownian motion) and has cost independent of the fiber slenderness (necessary for efficient simulation), then demonstrate how the package can be used to simulate cross-linked actin networks and sedimenting fiber arrays. In the second part, I will present a model for how actin filaments shape their own homeostasis through biochemical coupling with the protein RhoA. I will introduce an activator-inhibitor model for RhoA/actin coupling, then use a Bayesian inverse framework to infer the distribution of actin dynamics parameters associated with experimental data in C. elegans and starfish embryos. The inferred parameter values demonstrate how varying actin kinetics can explain changing patterns of RhoA excitability observed across multiple experimental systems.

Future semesters

Archived semesters



Return to the Applied Mathematics Group Page