Applied/ACMS: Difference between revisions
No edit summary |
(Indresan Govender info.) |
||
Line 30: | Line 30: | ||
|Sep 27 | |Sep 27 | ||
|[https://ptg.ukzn.ac.za Indresan Govender] (Mintek / Univ. of KwaZulu-Natal, South Africa) | |[https://ptg.ukzn.ac.za Indresan Govender] (Mintek / Univ. of KwaZulu-Natal, South Africa) | ||
| | |Granular flow modeling and visualization using nuclear imaging | ||
|Rycroft | |Rycroft | ||
|- | |- | ||
Line 97: | Line 97: | ||
The concept of an energy landscape emerged in the 1930’s as a way to calculate chemical reaction rate constants via Henry Eyring’s transition state theory. Its use has expanded since then, remaining central to quantifying metastability (infrequent jumps between deterministically-stable, energy minimizing, states) that arises in noisy systems when the thermal energy is small relative to the energy barrier separating two states. In this talk, I will present extensions of this theory that I have developed and applied to physical and biological systems. The first is an infinite dimensional system for which I prove metastability is present in the absence of an energy barrier; I extend transition state theory to compute mean transition times. In the second, I derive a model for a spatially-extended magnetic system with spatially-correlated noise designed to sample the Gibbs distribution relative to a defined energy functional. In the third, I show a quasi-potential can be found and used to describe metastable transitions between stable clusters in a bead-spring polymer model of chromosome dynamics with additional stochastic binding pushing the system out of equilibrium. | The concept of an energy landscape emerged in the 1930’s as a way to calculate chemical reaction rate constants via Henry Eyring’s transition state theory. Its use has expanded since then, remaining central to quantifying metastability (infrequent jumps between deterministically-stable, energy minimizing, states) that arises in noisy systems when the thermal energy is small relative to the energy barrier separating two states. In this talk, I will present extensions of this theory that I have developed and applied to physical and biological systems. The first is an infinite dimensional system for which I prove metastability is present in the absence of an energy barrier; I extend transition state theory to compute mean transition times. In the second, I derive a model for a spatially-extended magnetic system with spatially-correlated noise designed to sample the Gibbs distribution relative to a defined energy functional. In the third, I show a quasi-potential can be found and used to describe metastable transitions between stable clusters in a bead-spring polymer model of chromosome dynamics with additional stochastic binding pushing the system out of equilibrium. | ||
'''Indresan Govender (Mintek / Univ. of KwaZulu Natal, South Africa)''' | |||
Title: Granular flow modeling and visualization using nuclear imaging | |||
Despite its ubiquity, a complete theory to describe the underlying rheology of granular flows remains elusive. Central to this problem is the lack of detailed, in-situ measurements of the granular flow field. To this end, we present two non-invasive imaging techniques currently employed to measure the flow of individual grains within granular flow systems that span simple mono-sized flows of plastic beads to complex industrial mixture flows of rocks and slurry. The first technique employs diagnostic X-rays operated in biplanar mode to triangulate the motion of low-density granules in simplified flow systems to within a 3D spatial accuracy of 0.15 mm at tracking frequencies up to 100 Hz. The second—arguably the workhorse of our research operation—is the nuclear imaging technique of Positron Emission Particle Tracking (PEPT) which triangulates the back-to-back gamma rays emanating from radiolabeled particles to within a millimeter in 3D space at a millisecond timing resolution. PEPT can track the motion of any particle with a diameter greater than ∼20 microns. Both techniques are well suited to studying the flow of granular materials after the data is cast into volume and time averages consistent with the continuum framework. In this talk I will explore the many interesting analysis techniques employed to mapping out the complex flow regimes found in typical granular systems, and the insights they offer towards better understanding their rheological character. Examples explored will include rotating drum flows (wet and dry), shear cells and their industrial counterpart the IsaMill<sup>TM</sup>, hydrocyclone separator flows, and the motivation for tracking of multiple particles. The validation offered to numerical schemes like the Discrete Element Method will also be explored wherein we highlight the complimentary role that measurement and simulation play in unravelling the secrets of granular flows. Finally, and deviating somewhat from the imaging world, I will present our efforts towards utilizing granular flow modeling in real-time control of complex industrial flows encountered in mineral processing. | |||
==== Anil Damle (Cornell)==== | ==== Anil Damle (Cornell)==== |
Revision as of 15:39, 20 September 2024
Applied and Computational Mathematics Seminar
- When: Fridays at 2:25pm (except as otherwise indicated)
- Where: 901 Van Vleck Hall
- Organizers: Maurice Fabien, Chris Rycroft, and Saverio Spagnolie,
- To join the ACMS mailing list: Send mail to acms+subscribe@g-groups.wisc.edu.
Fall 2024
Date | Speaker | Title | Host(s) |
---|---|---|---|
Sep 13 | Nan Chen (UW) | Intro. to Uncertainty Quantification (UQ) (tutorial) | Spagnolie |
Sep 20 | Katie Newhall (UNC Chapel Hill) | Energy landscapes, metastability, and transition paths | Rycroft |
Sep 27 | Indresan Govender (Mintek / Univ. of KwaZulu-Natal, South Africa) | Granular flow modeling and visualization using nuclear imaging | Rycroft |
Oct 4* | Hongfei Chen (Tulane) | Jean-Luc | |
Oct 11 Colloquium in B239 at 4:00pm | Mikaela Iacobelli (ETH/IAS) | TBA | Li |
Oct 18 Colloquium in B239 at 4:00pm | Guillaume Bal (U Chicago) | TBA | Li, Stechmann |
Oct 25 | Anil Damle (Cornell) | Fine-grained Theory and Hybrid Algorithms for Randomized Numerical Linear Algebra | Li |
Nov 1 | Michael Sprague (NREL) | TBA | Spagnolie |
Nov 8 | Miranda Holmes-Cerfon (UBC) | Stechmann | |
Nov 15* | Yue Sun (UW–Madison) | Rycroft | |
Nov 22 | Ondrej Maxian (U Chicago) | TBA | Ohm & Spagnolie |
Nov 29* | Thanksgiving | ||
Dec 6 | Ido Lavi (Flatiron) | TBA | Spagnolie |
Dates marked with an asterisk correspond to home football games of the UW–Madison Badgers. On these dates it can be difficult to get a hotel room close to campus at short notice.
Abstracts
Nan Chen (UW–Madison)
Title: Taming Uncertainty in a Complex World: The Rise of Uncertainty Quantification -- A Tutorial for Beginners
I will provide a tutorial about uncertainty quantification (UQ) for those who have no background but are interested in learning more about this area. The talk will exploit many elementary examples, which are understandable to graduate students and senior undergraduates, to present the ideas of UQ. Topics include characterizing uncertainties using information theory, UQ in linear and nonlinear dynamical systems, UQ via data assimilation, the role of uncertainty in diagnostics, and UQ in advancing efficient modeling. The surprisingly simple examples in each topic explain why and how UQ is essential. Both Matlab and Python codes have been made available for these simple examples.
Katie Newhall (UNC Chapel Hill)
Title: Energy landscapes, metastability, and transition paths
The concept of an energy landscape emerged in the 1930’s as a way to calculate chemical reaction rate constants via Henry Eyring’s transition state theory. Its use has expanded since then, remaining central to quantifying metastability (infrequent jumps between deterministically-stable, energy minimizing, states) that arises in noisy systems when the thermal energy is small relative to the energy barrier separating two states. In this talk, I will present extensions of this theory that I have developed and applied to physical and biological systems. The first is an infinite dimensional system for which I prove metastability is present in the absence of an energy barrier; I extend transition state theory to compute mean transition times. In the second, I derive a model for a spatially-extended magnetic system with spatially-correlated noise designed to sample the Gibbs distribution relative to a defined energy functional. In the third, I show a quasi-potential can be found and used to describe metastable transitions between stable clusters in a bead-spring polymer model of chromosome dynamics with additional stochastic binding pushing the system out of equilibrium.
Indresan Govender (Mintek / Univ. of KwaZulu Natal, South Africa)
Title: Granular flow modeling and visualization using nuclear imaging
Despite its ubiquity, a complete theory to describe the underlying rheology of granular flows remains elusive. Central to this problem is the lack of detailed, in-situ measurements of the granular flow field. To this end, we present two non-invasive imaging techniques currently employed to measure the flow of individual grains within granular flow systems that span simple mono-sized flows of plastic beads to complex industrial mixture flows of rocks and slurry. The first technique employs diagnostic X-rays operated in biplanar mode to triangulate the motion of low-density granules in simplified flow systems to within a 3D spatial accuracy of 0.15 mm at tracking frequencies up to 100 Hz. The second—arguably the workhorse of our research operation—is the nuclear imaging technique of Positron Emission Particle Tracking (PEPT) which triangulates the back-to-back gamma rays emanating from radiolabeled particles to within a millimeter in 3D space at a millisecond timing resolution. PEPT can track the motion of any particle with a diameter greater than ∼20 microns. Both techniques are well suited to studying the flow of granular materials after the data is cast into volume and time averages consistent with the continuum framework. In this talk I will explore the many interesting analysis techniques employed to mapping out the complex flow regimes found in typical granular systems, and the insights they offer towards better understanding their rheological character. Examples explored will include rotating drum flows (wet and dry), shear cells and their industrial counterpart the IsaMillTM, hydrocyclone separator flows, and the motivation for tracking of multiple particles. The validation offered to numerical schemes like the Discrete Element Method will also be explored wherein we highlight the complimentary role that measurement and simulation play in unravelling the secrets of granular flows. Finally, and deviating somewhat from the imaging world, I will present our efforts towards utilizing granular flow modeling in real-time control of complex industrial flows encountered in mineral processing.
Anil Damle (Cornell)
Title: Fine-grained Theory and Hybrid Algorithms for Randomized Numerical Linear Algebra
Randomized algorithms have gained increased prominence within numerical linear algebra and they play a key role in an ever-expanding range of problems driven by a breadth of scientific applications. In this talk we will explore two aspects of randomized algorithms by (1) providing experiments and accompanying theoretical analysis that demonstrate how their performance depends on matrix structures beyond singular values (such as coherence of singular subspaces), and (2) showing how to leverage those insights to build hybrid algorithms that blend favorable aspects of deterministic and randomized methods. A focus of this talk will be on methods that approximate matrices using subsets of columns. Relevant motivating applications will be discussed and numerical experiments will illuminate directions for further research.
Future semesters
Archived semesters
- Spring 2024
- Fall 2023
- Spring 2023
- Fall 2022
- Spring 2022
- Fall 2021
- Spring 2021
- Fall 2020
- Spring 2020
- Fall 2019
- Spring 2019
- Fall 2018
- Spring 2018
- Fall 2017
- Spring 2017
- Fall 2016
- Spring 2016
- Fall 2015
- Spring 2015
- Fall 2014
- Spring 2014
- Fall 2013
- Spring 2013
- Fall 2012
- Spring 2012
- Fall 2011
- Spring 2011
- Fall 2010
Return to the Applied Mathematics Group Page